
Authorized licensed use limited to: Columbia University Libraries. Downloaded on January 22,2021 at 20:04:45 UTC from IEEE Xplore.  Restrictions apply. 

Reflex-Klystron Oscillators* 

EDWARD LEONARD GINZTONt, ASSOCIATE, I.R.E:., AND 

ARTHUR E. HARRISONt, SENIOR MEMBER,.I.R.E. 

Summary-A comprehensive analysis of reflex klystrons is de­
veloped by considering the electrons as particles acted upon by 
forces which modify their motion. The analysis is similar to earlier 
explanations of electron bunching in a field-free drift space and pre­
dicts a similar current distribution when bunching takes place in a 
reflecting field. The effect of the bunched electron beam is treated 
qualitatively by considering the effect of the beam admittance upon a 
simple equivalent circuit. A quantitative mathematical analysis based 
upon oscillator theory is also derived and the results are presented in 

• a series of universal curves which are used to explain the operating 
characteristics of these tubes. Power output, efficiency, starting cur­
rent, electronic tuning, and modulation properties are discuued. 
Some general remarks on reflex-oscillator design considerations are 
also included. 

INTRODUCTION 

REFLEX-klystron oscillators are an important 
member of an extensive family of velocity-modu­
lation tubes invented independently by R. H. 

Varian and W. W. Hansen at Stanford University, 
W. C. Hahn and G. F. Metcalf at Schenectady, and 
0. Heil in Germany. Velocity-modulation tubes are now 
quite generally known as klystrons, and perform the 
same functions at frequencies in the microwave region 
that triodes and pentodes do at lower frequencies. The 
mechanism of energy conversion is different, but analo7 
gies between klystrons and the electrical circuits used 
with conventional tubes are often useful. Klystrons with 
one or more resonators are used as oscillators, and multi­
resonator klystrons often replace conventional vacuum 
tubes for other applications. 

A reflex klystron utilizes a single resonator, and ob­
tains feedback by reflecting the electron beam so that it 
passes through the resonator a second time. This type 
of oscillator was described briefly by Hahn and Metcalf ,1 
and has been discussed in greater detail in other 
papers. 2- 4 The operation of these tubes can be explained 
by a ballistic or kinematic analysis; i.e., the electrons 
may be considered as particles which follow Newton's 
laws of motion. An understanding of the application of 
such a kinematic analysis to the principles of operation 
of the ordinary two-resonator klystron will be assumed. 
These principles have been presented in papers by 
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Varian 6 and Webster, 6 •7 and a similar analysis will be 
developed for the reflex-klystron oscillator. 

The analysis has been subdivided into two parts. The 
first section derives the transit-time relationships for the 
reflex type of klystron from the laws of motion. Then 
these relations are expanded to explain electron bunch­
ing, and the similarity between reflection-field bunching 
and bunching in a field-free drift space is shown. A 
second section applies these relationships to a derivation 
of the efficiency, P.ower output, and electronic tuning of' 
a reflex-klystron oscillator. The dependence of these 
characteristics on the beam current, beam voltage, re­
flector voltage, load, and other klystron design factors 
will be shown. 

OPERATING PRINCIPLES OF A REFLEX KLYSTRON 

A simplified drawing of a reflex klystron is shown in 
Fig. 1. The tube is a figure of revolution about the axis 
AA. The cathode surface K provides a source of elf'c-

,. 
Fig. 1-Cross-section view of a reflex klystron. 

trons when it is indirectly heated by F. The electrons 
are accelerated by the voltage Eo, which is known as the 
beam voltage, or as the acceleration voltage because it 
determines the velocity which the electrons have ac­
quired when they reach the anode plane. The emission 
current is controlled by the voltage Eu which is applied 
to the grid G. The cylindrical portion of the control-grid 
structure acts as a focusing element and gives a col­
limated beam which continues along the axis of the 
tube past the anode plane. In many klystron designs, 
the grid is not used and this electrode is only a focusing 

1 R. H. Varian and S. F. Varian, "A high-frequency oscillator 
and amplifier," Jour. Appl. Phys., vol. 10, pp. 321-327; May, 1939. 

6 D. L. Webster, "Cathodesray bunching," Jour. Appl. Phys., 
vol. 10, pp. 501-508; July, 1939. 

7 D. L. Webster, "The theory of klystron oscillations," Jour. Appl. 
Phys., vol. 10, pp. 864-872; December. 1939. 
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element. Fig. 2 shows the reflex klystron connected 
to the proper power supplies. The standard diagram for 
velocity-modulation tubes has been used, and the 
operating voltages have been labeled with the designa­
tions which will be used throughout this discussion. 

This electron-gun structure is quite similar to a triode 
tube; it has a cathode, a control grid, and an anode. In 
a klystron, however, the electron gun is merely ·the 
source of an electron beam and the radio-frequency por­
tion of the klystron is independent of the electron source. 

Fig. 2-Circuit diagram for a reflex oscillator and power supply. 

The beam travels along the axis of the tube beyond the 
anode plane with a uniform velocity corresponding to 
Eo, the acceleration voltage, until it reaches the resona­
tor gap. A radio-frequency voltage across the resonator 
gap will modify the velocity of the electrons in the beam. 
Some electrons will be speeded up when the field has a 
direction which will accelerate the beam. Other elec­
trons will be slowed down during another part of the 
radio-frequency cycle, and the velocity of some electrons 
will not be changed because they pass the gap when the 
resonator voltage is zero. The velocity variation will be 
assumed to be small, and the average velocity of the 
electrons in the beam will be identical to the velocity 
corresponding to the acceleration voltage, since an equal 
number of electrons will be slowed down and speeded 
up during one radio-frequency cycle. 

Beyond the resonator gap, the electrons encounter a 
retarding electric field produced by the potential be­
tween the reflector and the anode (Eo+Er)• This re­
flecting field brings the electrons to rest and returns 
them to the cavity resonator. The shape of the reflector 
electrode is designed to preserve the focus of the beam. 
The beam current is constant when the beam leaves the 
resonator gap, but electron bunching takes place while 
the electrons are in the reflection space, and the beam is 
density modulated when it returns to the cavity resona­
tor. 

If space-charge effects and the focusing action of the 
reflector shape are neglected, the bunching action is 
analogous to the motion of objects in a gravitational 
field.3 An Applegate diagram, in Fig. 3, is a convenient 
method of illustrating the bunching action. This dia­
gram represents the resonator-gap voltage as a function 
of time, and plots the position in the reflection space of 
a number of electrons which pass the resonator gap at 
selected intervals during a complete cycle. The opposite 
action of the radio-frequency field on the electrons leav­
ing the resonator and those returning to the resonator 
after bunching has been shown on the diagram. 

An electron which has been speeded up by the action 
of the radio-frequency field will travel farther into the 
reflecting field and will take longer than the average 

Fig. 3-Applegate diagram for a reflex-klystron oscillator. 

time to return to the resonator. This behavior is similar 
to throwing a ball in to the air; the harder the ball is 
thrown, the longer it takes to return to the ground. 
Reference to Fig. 3 will show that an electron which 
passes the resonator gap early in the cycle at time t,. is 
accelerated and requires a longer time to return than an 
electron leaving at time tb when the radio-frequency 
field is zero. The electrons which leave at time t. later 
in the cycle require less than the average transit time 
and all of these electrons return to the resonator in a 
bunch at time t,. Bunching of the electron beam is the 
result, and the uniform flow of beam current is con­
verted into an equivalent direct current with a super­
imposed alternating component. 

The arrival time t, of a group of electrons returning to 
the resonator depends upon the physical dimensions of 
the klystron, and also depends upon the acceleration 
voltage and the reflector voltage. In general, the transit 
time for the electron with average velocity, leaving at 
time tb, may correspond to _any number of cycles of the 
radjo-frequency field, and this number need not be an 
integer. But in order to sustain oscillations, the electron 
bunch must arrive during the time when the radio 
frequency is retarding the returning electrons, so 
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that the electron velocity is reduced and some of the 
kinetic energy of the electrons is transferred in to electro­
magnetic energy in the cavity-resonator field. 

The electron which is to become the center of the 
bunch leaves at the time tb when the radio-frequency 
voltage is zero and changing from acceleration to de­
celeration. At an integral number of cycles later, the 
radio-frequency voltage will again be zero, but for the 
returning electron, the field will be changing from de­
celeration to acceleration. This time is indicated by n 
cycles in Fig. 3. Since a maximum retarding field is re­
quired for maximum energy transfer from the bunched 
electron beam, the transit time for an electron which 
enters the reflecting field with aver~ge velocity must cor­
respond to one-quarter cycle less than an integral num­
ber of cycles. This transit-time requirement may be 
verified by inspection of Fig. 3. 

Most of the electrons are collected by the metal walls 
of the tube after they have given up energy to the reso­
nator field. Other electrons may have been lost by inter­
ception by the grid structures. A few electrons may 
survive these chances of getting collected and will be 
decelerated near the cathode surface, then reaccelerated 
with the newly emitted electrons. Upon re-entering the 
reflection space, these electrons will behave differently 
from the electrons which are going through the round­
trip cycle for the first time. These electrons which make 
multiple transits may produce undesirable effects, but 
in most cases the effect of these electrons may be neg­
lected. More important factors, such as space-charge 
debunching forces, will be neglected in order to simplify 
the analysis. This theory is not intended for designing 
klystrons, but to help in understanding many of the phe­
nomena which occur. 

TRANSIT-TIME RELATIONSHIPS IN THE 

REFLECTION SPACE 

It was mentioned previously that the electrons which 
pass the resonator gap when the radio-frequency voltage 
is zero enter the reflecting field without any change in 
velocity, and are defined as electrons with average 
velocity. Electrons which pass the resonator gap at a 
time tb (see Fig. 3) when the radio 0 frequency field is 
changing from accleration to deceleration, become the 
center of the bunch. The electrons in the bunch have 
different velocities, and these velocities are continually 
changing during the time the electrons are in the re­
flection space; however, it is convenient to consider that 
the bunch moves as a unit along a path determined by 
the electron which is to become the center of the bunch. 
Note that the lines in Fig. 3 representing electrons leav­
ing at times ta, tb, and t. appear to converge about the 
center of the bunch. • 

A brief review of electron ballistics will derive the 
equations which are useful in determining the relation­
ships between the transit time and the tube-design 

parameters. The calculation of the transit time from 
the tube voltages and the reflector-electrode spacing 
will not be accurate because the effect of the nonuniform 
field and the effect of space charge have been neglected. 
Although the effects of space charge are quite impor­
tant, the assumption simplifies the analysis consider­
ably, and the result is quite useful. 

In the derivations which follow, the terminology will 
be defined as it is introduced. In addition, a glossary of 
symbols is included in an appendix. The average elec­
tron velocity v0 is determined by the acceleration volt­
age Eo, and the relation may be obtained from the fact 
that the kinetic energy gained by an electron of mass m 
and charge e is equal to the potential energy which ac­
celerates the electron. This relation may be stated 

1/2(mvo2) = Eoe. _{1) 

Equation (1) is then rewritten in the form 

Vo = ,v'~ Eo. (2) 

Other laws of motion of particles may be used to de­
termine the transit time. If the deceleration is denoted 
by a, then the position of a particle as a function of time 
is given by 

s = v0t - 1/2(at 2). {3) 

When tis equal to the average transit time To the elec­
tron has returned to the resonator, the electron velocity 
is again vo, but in the opposite direction, and s is equal 
to zero; i.e., 

0 = voTo - 1/2{aT 02). (4) 

There are two solutions to (4). To equal t6 zero cor­
responds to an electron which has not traversed the re­
flection space, and is disregarded. The other solution is 

2vo 
To=-· 

a 
(5) 

The deceleration a may be evaluated from the familiar 
equation for the force acting on a particle. This force is 
given by the product of the charge on the electron and 
the gradient of the potential between the anode and the 
reflector electrode. If the reflector field is assumed to be 
uniform, the gradient is simp,ly the sum of the voltages 
on the reflector electrode divided by so, the reflector 
spacing. Therefore, 

Eo+ E, 
F = ma - e---· (6) 

So 

Substitution of (6) and (2) in (5) gives 

2vo v':-;: 
To = ------ = 4so----

e Eo + E, Eo + E, 
(7) 

m so 

for the average transit time. 
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It is usually more convenient to express the transit 
time in terms of a number of oscillation cycles rather 

than as a time interval. This equivalent number of 
cycles will be designated N, and is defined by 

N =JTo (8) 

wheref is the frequency of oscillation. Equation (7) may 
therefore be written 

.. 

./m~ 
'V 2e 

N = 4Jso---­
Eo+ Er 

•.----.---,-------,----..----

1,tt----t---+-----l---+--~ 
> 
0: =~---si-..._ 

l.zt---~i-----+---t--=:::.....o:::--+----1 

o,'----+----"""-,.t--...::,,..---¾_.---..::::....._4-- __ --..!. 

ACCELERATION VOLTAGE 

Fig. 4-Family of curves showing voltage modes in a 
reflex oscillator. 

(9) 

If oscillation is to be at maximum strength, the num­

ber of cycles during the transit time in the reflection 

space must satisfy the relation mentioned in the discus­
sion of Fig. 3; i.e., 

N = n - 1/4 (10) 

where n is any integer greater than zero. Oscillation at 

the same frequency will occur for a number of values of 

N, and each value of N may be provided by the proper 

choice of the acceleration voltage and the reflector volt­

age. A series of curves showing the reflector voltage 

required to give constant frequency for any value of ac­

celeration voltage is shown in Fig. 4. Each curve 

represents a different value of N. The·value of N may 

be estimated from the frequency, reflector spacing, and 

voltages involved. These transit times are an important 

factor in the behavior of reflex klystrons, and the impor­

tance of transit time will be discussed in greater detail 

in the sections which follow. In practice, transit time 

corresponding to values of N between 1 ¾ and 10¾ cycles 
are typical. 

ELECTRON-BUNCHING RELATIONSHIPS 

It is obvious that electron bunching must occur in a 

reflex klystron because the velocity variation introduced 

by the resonator voltage produces a variation of the 
transit times of electrons which pass the resonator gap 

at different times during a cycle. This variation of 

transit time may be expected from (5), which may be 

rewritten in terms of a varying velocity instead of the 

average velocity, and becomes 

2v 
T=-

a 
(11) 

when T and v are varying quantities. The current dis­

tribution in the bunched beam is similar to the bunching 

in a two-resonator klystron, but the manner in which 

the electrons become grouped is different and there is a 

phase difference of 180 degrees between the two types of 

bunching. 
These differences between reflection-field bunching 

and field-free bunching are introduced because the 

transit time is proportional to the electron velocity in a 

reflex klystron; while the transit time in the field-free 

drift space' between the resonators in a two-resonator 

klystron is inversely proportional to the velocity. As a 

result, the electron bunch in a reflex klystron is formed 

around the electron which passed the resonator gap 

when the radio-frequency voltage was changing from 

acceleration to ciecleration. In contrast, the bunch in a 

two-resonator klystron forms around the electron which 

passed the input resonator gap when the radio-frequency 

field was changing from deceleration to acceleration. 3 

The existence of a field-free bunching space in addi­

tion to the reflection space requires a modification of 

this analysis. A discussion of this effect is given in a 

number of references 1- 3 and will not be repeated here. 

An analysis of the bunching process in a reflex klys­

tron may be made, following the method used by 

Webster 6 for the two-resonator type of klystron. Negli­

gible transit time across the resonator gap will be as­

sumed in the preliminary analysis, and the factors which 

must be modified when this assumption is invalid will be 

discussed in a later section. 
The electrons approach the resonator gap with aver­

age velocity Vo, which is determined by the acceleration 

voltage Eo as shown in (2). The velocity of the electrons 

will be modified by the radio-frequency voltage at the 

resonator gap, and after· passing the gap the velocity 

will be 

• /2e 
v = 'V m v Eo + E1 sin wt1 (12) 

where E 1 is the peak value of the radio-frequency volt­

age at the resonator gap, w is the angular frequency and 

equal to 21rf, and ti is the time required for an electron to 

pass the resonator gap. The transit time of an electron 
will be given by (11), and may be rewritten in a form 

.similar to (7). 
--Im Eo 

T = 4s0 
2e • / 1 + Ei sin wt1• (13) 

Eo+Er'V Eo 
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Equation (7) may be substituted in (13) to give 

T = To • / 1 + Ei sin wti. V Eo 
(13a) 

When the ratio of Ei/Eo is small, an approximate form 
of (13a) may be used 

T = To (1 +~sin wt1). (14) 
2Eo 

Returning electrons will arrive at the resonator gap 
at a time '2, which will be the sum of the transit time 
(T) and the departure time (ti). 

t2 = ti+ To (1 +~sin wti)• (15) 
2Eo 

The number of electrons which return to the resonator 
during a time interval d'2 will be equal to the product of 
the instantaneous beam current in the reverse direction 

X•l.00 

(n+¾)~ 
ARRIVAL TIME t2 

Fig. 5-Instantaneous beam current. Two complete cycles are shown 
and three values of the bunching parameter are represented. 

/ 2 and the time interval d'2. This same number of elec­
trons originally passed the resonator gap during an 
interval dt1, when the beam current in the forward 
direction was equal to Io, the direct beam current. If 
these expressions for the number of electrons are 
equated, 

(16) 

and the instantaneous bunched current is given by 

12 = Iodti/dt2. (17) 

Differentiating both sides of (15) gives 

dt2 = dti (1 + wTo ~ cos wti) (18) 
2Eo 

or 

dt2 = dti ( 1 + 1rJTo !: cos wti). (18a) 

Substituting (8) in (18a) gives 

dt2 = dti ( 1 + 1rN !:Cos wt1) (18b) 

which may be rewritten 

(18c) 

The quantity x is known as the bunching parameter, 
and is defined by 

Ei 
X = 1rN-. 
, Eo 

(19) 

Other expressions for the bunching parameter may be 
obtained by substitution in (19), but these expressions 
will not be similar to the other equations for the bunch­
ing parameter when bunching occurs in a field-free 
drift space. 
· Substituting (18c) in (17) gives 

Io 
12=-----

1 + X COS wt1 
(20) 

Equation (20) is ideµtical in form to the expression for 
the bunched current in a double-resonator klystron. 6 

The equations for the instantaneous current express 
this current as a function of t1, the departure time of the 
electrons when they enter the reflecting field. It is more 
desirable to know the relation between the instantane­
ous current and t2, the arrival time of the returning elec­
trons. This relationship is easily obtained if a curve of 
ti versus '2 is available, and a family of such· curves is 
illustrated in Fig. 5 for several different values of the 
bunching parameter x. This graphical representation of 
the relationship is necessary because (15) cannot be 
solved explicitly for t1. Rewriting (15) in terms of the 
bunching parameter x gives a form which is convenient 
for computation of the curves in Fig. 5. Equation (15) 
then becomes 

X 
t2 = ti + To + - sin wt 1. 

w 
(21) 

Note that the slope of the curves in Fig. 5 may be­
come negative when the bunching parameter is greater 
than unity. This negative slope corresponds to a nega­
tive value of 12 indicated by (20) when xis greater than 
unity. The beam current never becomes negative; this 
sign merely means that electrons departing at a later 
time return before electrons which left earlier but 
traveled farther into the reflecting field. Since electrons 
leaving at· three different times may arrive simultane­
ously, the beam current is the sum of the absolute mag­
nitudes of the values obtained from (20) for the three 
values of ti. Additional discussion of this point, based 
on an analysis of bunching in a field-free drift space, has 
been published. 8 

Curves of instantaneous current, corresponding to the 

8 D. L. Webster, "Velocity modulation currents," Jour. Appl. 
Phys., vol. 13, pp. 786-787; December, 1942. 
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t1 versus t2 curves in Fig. 5, are shown in Fig. 6. The cur­
rent peaks when the bunching parameter is unity, or 
greater, are quite large, but are not infinite if the transit 
time in the resonator gap is finite. 9 •10 However, it is 

ARRIVAL TIME t2 (n+'4)~ 

Fig. 6-Electron-arrival-time curves for three values 
of the bunching parameter. 

convenient to treat the gap length as infinitesimal, and 
correction factors which can be applied when the transit 
time through the gap is appreciable will be given in the 
next section. 

Since the instantaneous beam current is identical to 
that given by Webster 6 for the field-free case, the cur­
rent may be expressed by a Fourier series with coeffi­
cients which are Bessel functions of the first kind. 

I2 = Io[l + 2J1(x) sin (wt2 - 21rN) 

+ 2J 2(2x) sin 2(wt2 - 21rN) + · · · 
+ 2Jn(nx) sin n(wt2 - 21rN)]. (22) 

I 
,,- ~ 

I \ 
" I/ \ I/ I'-

I'\. / " ' I-..--' 

I 

0 4 • • 10 

BUNCHING PARAMETER x="ll'N'(. 

Fig. 7-Radio-frequency component of the bunched beam current. 

Only the second term is of particular interest" in an 
oscillator, and the fundamental component of the radio­
frequency current in the beam, which will be designated 
i2, is given by 

i2 = 2IoJ1(x) sin (wt2 - 21rN). (23) 

D L. J. Black and P. L. Morton, "Current and power in velocity­
modulation tubes," PROC. I.R.E., vol. 32, pp. 477-482; August, 1944. 

10 A. E. Harrison, "Graphical methods for analysis of velocity­
modulation bunching," PROC. I.R.E., vol. ·33, pp. 20-33; January, 
1945. 

The higher harmonics are unimportant because reflex 
klystrons are designed to operate with a high effective Q. 

Fig. 7 shows the peak value of the radio-frequency 
component of the bunched ,beam current as a function 
of the bunching parameter. The peak value has been 
divided by Io so that the ordinates of the curve are equal 
to 2J1(x). This Bessel function output curve is charac­
teristic of klystron tubes, and may be considered 
analogous to the plate-current versus grid-voltage char­
teristic of conventional tubes. 

TRANSIT-TIME EFFECTS IN THE 

RESONANT CAVITY 

The previous discussion has ignored the effect of the 
transit time of the electrons in the resonator gap. If the 
electron crosses the gap in a small fraction of an oscilla­
tion cycle, then the change in kinetic energy will be de­
termined by the potential difference across the gap at 
that instant. However, if an electron requires a full 
cycle to traverse the resonator gap, the electron will be 
accelerated during half of the cycle and decelerated 
during the remainder of the cycle. As a result, the net 
change in kinetic energy will be zero if the gap voltage 
is very small compared to the beam voltage. 

This effect may be expressed in terms of a "beam 
coupling coefficient" of the gap. The expression for the 
bunching- parameter in (19) must be modified by this 
beam coupling coefficient {3 when the transit time across 
the resonator gap is an appreciable fraction of a cycle, 
and 

E1 
X = {J1rN -

Eo 
(24) 

gives the correct value for the bqnching parameter. 
Equations (24) and (19) become identical when {3 has a 
value of unity. 

It is necessary to know the transit time across the gap 
in order to evaluate {3. If the distance is d, and the elec­
tron velocity has the average value Vo, then the transit 
time is d/vo. The transit angle ~ is given by 

~ = 21rfd/vo. (25) 

If the averaging process mentioned in the previous para­
graph is performed, the value {3 may be shown to be 

sin ~/2 
fJ=5/2· (26) 

In practice, {3 is always less than unity, but in many 
cases it is convenient to assume it is equal to unity. 
Since this coefficient appears in most of the equations 
which describe the behavior of reflex-klystron oscil­
lators, it will be referred to frequently in the next section 
on oscillator theory, which will utilize the fundamental 
principles derived here to explain the electrical char­
acteristics of these tubes. 
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GENERAL THEORY OF OSCILLATORS 

The basic principles of electron bunching discussed in 
the preceding sections can be used to derive the typical 
electrical characteristics of reflex-klystron oscillators. 
The analysis is quite similar to the analysis of oscil­
lators in the more familiar radio-frequency region. 
Certain outstanding differences will be apparent; the 
most important is the dependence of the frequency of 
oscillation on the input voltages. These differences are 
the result of the dependence of the bunching action on 
transit time, and emphasize the fact that analogies to 
conventional vacuum tubes cannot always be used to 
describe the behavior of klystrons, although some of the 
concepts and terminology are equally useful in discus­
sion of velocity-modulation tubes. 

There are several methods which might be used to 
analyze the operation of a reflex-klystron oscillator. All 
of these methods are essentially the same and merely 
represent differing viewpoints in approaching the prob­
lem. Pierce 4 has described a method which equates the. 
admittance of the resonator of a reflex oscillator and the 
transadmittance of the bunched electron beam. A varia­
tion of this method, using impedances instead of ad­
mittances, was used in an analysis of double-resonator 
klystron oscillators. 11 This variation of the analysis is 
desirable for a double-resonator klystron oscillator be­
cause the relation between the output current and input 
voltage in tightly coupled tuned circuits is usually given 
in the form of a transfer impedance. A reflex-klystron 
oscillator is much simpler to analyze because a single 
resonator is used. 

The effect of the reflected beam in a reflex-klystron 
oscillator can be explained quite easily by assuming that 
the radio-frequency component of the bunched beam 
introduces an admittance Y2 in parallel with the reso­
nant circuit. This method reduces the analysis to a 
simple circuit problem in which a change in the value 
of Y2 may change the resonant frequency or losses in the 
circuit. The results are correct; in fact, it can be shown 
that the various methods of analysis are mathematically 
identical. The advantage of the method to be used here 
is primarily convenient in visualizing the problem, since 
the effect of varying components in a circuit is often 
more easily understood than the effect of varying param­
eters in an equation. 

THE EQUIVALENT CIRCUIT OF A REFLEX­

KLYSTRON OSCILLATOR 

An equivalent circuit for a reflex-klystron oscillator 
based on the method outlined above, is shown in Fig. 8. 
The cavity resonator and its coupled load are repre­
sented by the parallel resistance-inductance-capacitance 
circuit. The copper losses and other resonator losses 

11 A. E. Harrison, "Klystron oscillators," Electronics, vol. 17, pp, 
100-107; November, 1944. 

such as loading caused by the beam itself or secondary 
electrons, are represented by an equivalent shunt re­
sistance Rs, and the coupled load or output circuit con­
sidered as another parallel resistance RL. Then the ef­
fective resistance RsL would be given by the expression 
for two resistances in parallel 

RsRL 
RsL = ---­

Rs+ RL 
(27) 

The equivalent capacitance C represents the capacitance 
of the resonator gap. The value of this capacitance can 
be estimated to a satisfactory approximation from the 
formula for a parallel-plate capacitor, using the area 
and spacing of the resonator grids forming the gap. The 
value of the equivalent inductance Lis chosen to make 
the resonant frequency of the equivalent circuit equal 
to the resonant frequency of the cavity. 

If the reflex klystron is oscillating, or if energy is 
coupled into the cavity resonator from an external 
source, then a voltage will exist across the resonator gap. 
This voltage is represented by the voltage E across the 
capacitance C in the equivalent diagram in Fig. 8, and 
the value of Eis given by 

E = E1 sin wt (28) 

Fig. 8-Equivalent circuit for a reflex-klystron oscillator. 

where E 1 is the peak value of the voltage across the 
resonator gap, and w and t represent the angular fre­
quency of oscillation and time. 

The bunching action produces a radio-frequency cur­
rent i2 which depends upon the beam current Io and the 
bunching parameter x, as shown in (23). 

i2 = 2Iol 1(x) sin (wt - 21rN). (23) 

N represents.the number of oscillation cycles during the 
time an electron is in the reflection space. A current 
{3i2 is shown flowing out of the "fictitious" admittance 
Y2 , which represents the effect of the bunched beam 
current in the equivalent diagram. This direction for the 
current is chosen because Y2 represents the source of 
power. The beam coupling coefficient /3 is introduced in 
order to include the effect of the decreased energy trans­
fer from the beam to the resonator when the gap transit 
time is large. This factor must be included in each step 
of the derivation in which it should appear; but a value 
of unity, corresponding to negligible-gap transit time, 
will be assumed in most cases in order to simplify the 
discussion of this analysis. 
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Admittances are used in this discussion because ad­
mittances can be added when considering parallel cir­
cuits. Equation (27), expressed in the form of the sum 
of two conductances (the real part of an admittance), 
would be written 

1 1 1 
-=-+-· 
RsL Rs RL 

(29) 

The total admittance of the resonator Ys would include 
the susceptance terms for the inductance and capaci­
tance as well as the conductance terms in (29). 

1 1 . 
Ys = -+--_!__+ jwC. 

Rs RL wL 
(30) 

This form will be quite convenient in the analysis of a 
reflex oscillator because real and imaginary terms may 
be considered separately. 

An evaluation of the admittance Y2 which is added to 
the resonator admittance may be obtained from the 
fact that a voltage E must cause a current /3~ to flow. 
The magnitude of Y2 will be determined by the ratio of 
the peak value of /3i2 and the peak voltage E1. 

2fJlol1(x) 
Y2=----• 

E1 
(31) 

The phase of Y2 is determined by the transit time in the 
reflection field. If the transit time corresponds to (n-¼) 
cycles, .where n is an integer, then the electrons in the 
bunch will be retarded, and the beam will transfer 
energy to the radio-frequency field in the resonator. 
This relation was explained in the discussion of Fig. 3. 
Under these conditions Y2 will be a pure negative con­
ductance. A transit time of (n+¼) cycles corresponds to 
a transfer of energy from the radio-frequency field to the 
electron beam, and in this case Y2 is a positive conduct­
ance; i.e., the beam represents an additional loss in the 
circuit. 

Other values of transit time cause Y2 to be complex 
since the radio-frequency component of the bunched 
beam current will not be in phase with the resonator 
voltage. The phase angle of i2 will be represented by ct,, 
and ct, will be considered zero when the transit time in 
the reflection· field corresponds to (n -¼) cycles. The 
expression for i2 in (23) may be rewritten 

i 2 = 2lol 1(x) sin [wt - 21r(n - 1/4) - t/>]. · (32) 

Comparison of (23) and (32) shows that the phase 
angle ct, is defined by 

ti> = 21rN - 21r(n - 1/4). (33) 

N may have any value and is determined by the transit 
time in the reflection space, but n is always an integer. 
If the transit time is correct for maximum output, then 
the phase angle ct, is zero, and N is given by (10). 

N = n - 1/4. (10) 

Decreasing either the acceleration voltage or the re­
flector voltage increases the transit time in the reflection 
space and increases the angle ct,. 

It will be convenient to express i2 in the vector form 
instead of the sinusoidal form in (32). 

i2=2lol1(x)[cosq,-jsinq,]. (34) 

Since Y2 is a negative admittance wh_en ct, is equal to 
zero, as defined in the discussion following (31), the 
complex admittance is 

-fJi2 2fJlol1(x) 
Y 2 = -- = --- [ - cos ti> + j sin ti>]. (35) 

E1 E1 

Both components of the admittance are plotted in Fig. 
9. The conductanc;e, which is the real term in (35), is 
shown as a solid line, and the susceptance is a dash line. 
The vertical scale in Fig. 9 is purely arbitrary, since 
Io, J1(x) and E1 are unspecified. 

PHASE ANGLE•-

Fig, 9-Conductance and susceptance components of 
the beam admittance. 

A qualitative analysis of a reflex oscillator may be 
obtained from inspection of Fig. 9. As the phase angle 
is increased from a negative value toward zero, the 
conductance changes from a positive value, indicating a 
loss, to a negative value representing a source of power. 
Oscillation will occur when the negative conductance is 
equal in magnitude to the conductance of the cavity; 
i.e., when the source of power is just sufficient to supply 
the losses in the resonator and the load. The magnitude 
of the circuit conductance is indicated by the horizontal 
dotted line in Fig. 9. The shaded portion shows the re­
gion in which oscillation will occur. 

When ct, is equal to zero, corresponding to the transit 
time for maximum output, the beam susceptance is zero 
and the tube will oscillate at the natural frequency of 
the cavity resonator. Note that the equivalent capaci­
tance of the resonator corresponds to a positive suscep­
tance in (30). Increasing the phase angle until ct, is 
positive introduces an additional positive susceptance 
in parallel with C, and the frequency of oscillation be­
comes less than the natural frequency of the resonator. 
A negative susceptance might be considered a negative 
capacitance which decreases the effect of C, or it might 
be viewed as an inductance in parallel with L. Either 
viewpoint indicates that the resonant frequency of the 
system will be increased when ct, is negative. 

The value of this analysis can be demonstrated by 
experimental verification of the theory. If the beam cur­
rent is kept quite small so that oscillation does not 
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occur, the magnitude of the beam conductance and 
susceptance components will be sinusoidal, as shown by 
Fig. 9, and the effective Q and resonant frequency of 
the ·cavity will vary as the phase of the feedback is 
changed by varying the reflector voltage. These changes 
were measured; the results of the experiment are shown 
in Fig. 10· and agree quite closely with the theoretical 
prediction. 

A casual inspection of Figs. 9 and 10 might suggest 
that the tuning effect becomes small for large values of 
the phase angle <f, near the points where oscillation fails 
to occur, because. the sine function is not changing 

Fig. 10-Experimental curves showing the effect of 
the beam admittance. 

rapidly. This behavior is correct for the conditions 
represented by Fig. 10, but when the beam current is 
large enough to maintain oscillation; i.e., when the beam 
current is much greater than the starting current, the 
sinusoidal variation of frequency does not occur. Actu­
ally, the scale in Fig. 9 depends upon the ratio J1(x)/E1, 
and this ratio decreases as the strength of oscillation in­
creases. As a result, the tuning effect decreases rapidly 
as the transit time in the reflection space approaches the 
value required to make the phase angle <f, equal to zero, 
and the frequency deviation is actually proportional to 
the tangent of the phase angle rather than the sine. This 
effect will be apparent from the quantitative analysis 
which follows. 

ANALYSIS OF REFLEX-OSCILLATOR CHARACTERISTICS 

If the shunt resistance of a resonator is independent 
of frequency, the analysis is simplified because the power 
output and efficiency relations are obtained by consid­
ering only the conductance component of the beam ad­
mittance. After the strength of oscillation has been de­
termined, the frequency of oscillation can be obtained 
from the magnitude of the beam susceptance. If the 
beam conductance is greater than the value required to 
supply the losses in th~ resonator and its load, the 

strength of oscillation will increase until the value of 
the negative beam conductance is reduced to the con­
ductance of the resonator and its load. This means that 
the conductance of the system is zero when the klystron 
is oscillating. The sum of the susceptances must also 
be zero, and this relation determines the frequency of 
oscillation. 

The starting current is one of the important charac­
teristics of an oscillator, and will be used to illustrate 
this method of analysis. The starting current is the low­
est value of beam current Io which will allow oscillation 
to exist. The sum of the cavity conductance and the 
beam conductance from (35) must be zero for oscillation 
to occur. 

1 2Ploli(x) 
--- ---coscJ, = 0. 
RsL E1 

(36) 

The peak resonator voltage E1 and x are related, and 
the analysis is simplified if x is used as the variable. E1 
may be expressed in terms of x by rewriting (24). 

Ei 
x = P1rN - (24) 

Eo 

Eox 
E1 =--· 

P1rN 
(37) 

Substituting (37) in (36) and rearranging terms gives 

x /j 21rNI0RsL 
-. -- =-----cos"' 
2Ji(x) Eo 

(38) 

x P2rNioRsRL --- = ----- cos q,. 
2Ji(x) Eo(Rs + RL) 

(38a) 

Weak oscillation corresponds to extremely small 
resonator voltage, and the bunching parameter xis al­
most zero under these conditions. The J 1(x) Bessel 
function is equal to x/2 for small values of x, therefore 
the left side of the equation will be unity when Io is 
equal to the starting current. The current will be a 
minimum for the starting conditions only if the phase is 
correct; i.e., cos <f, must be a maximum and <f, is equal 
to zero, the phase for maximum output. When these 
conditions are imposed on (38), we obtain an expression 
for the starting current. 

Eo 
I Start = ---­

/j21r N RsL 
(39) 

Reasonable values which might be s.ubstituted into 
(39) in order to give some idea of the current required 
for oscillation follow: 

p2 = 1.0 . 

Eo = 300 volts 

N = 4-f cycles 

RsL = 20,000 ohms. 



Authorized licensed use limited to: Columbia University Libraries. Downloaded on January 22,2021 at 20:04:45 UTC from IEEE Xplore.  Restrictions apply. 

106 P Proceedings of the I.R.E. and Waves and Electrons March 

Representative values have been chosen, and indicate 
that a beam current of one milliampere will maintain 
oscillation. 

The term x/21 1(x) in (38) and (38a) is one form of 
a very important parameter in the analysis of ariy os­
cillator. It was used and explained in an article 11 on 
double-resonator klystron oscillators and will appear as 
a co-ordinate in many of the illustrations which follow. 
The basic parameter, which applies to conventional 
vacuum tubes as well as velocity-modulation types, 
may be defined as the magnitude of the ratio of the 
small-signal transadmittance of a tube to the large-signal 
transadmittance. This ratio is a measure of the satura­
tion effect at high input levels and the term "transre­
duction factor" has been proposed for this ratio. The 
term is not limited to analysis of oscillators but is 
equally useful in amplifiers and other vacuum-tube cir­
cuits. When used in an analysis of klystron operation 
based on small variations of velocity, the value of the 
parameter has the convenient mathematical equivalent 
x/2J 1(x), which has been mentioned. 

g 

-10 0 +10 •zo 
TRANSREDUCTION FACTOR ~X) 

Fig. 11-Bunching parameter x as a function of beam current and 
other variables. The unshaded portion is the normal opera ting 
region for a reflex oscillator. 

Increasing the beam current above the starting cur­
rent value will greatly increase the output. This can be 
shown by deriving the expression for the power deliv­
ered to the resonator and load. This power will be desig­
nated P 2 , and is the power delivered by the bunched 
beam to the shunt resistance RsL- The value of P2 is 
given by one half of the product of E1, the peak resona­
tor voltage, and the peak value of the in-phase com­
ponent of i2• This product must be reduced by the beam 
coupling coefficient /3, in order to include the effect of 
finite transit time across the resonator gap. 

P 2 = 1/2(E 1{3i2 cos cf,) = (,Eiloli(x) cos cf,. (40) 

Substituting the expression for E1 in (37) into (40) 

Eolo cos cf,· ( ) 
P2 = ----xJ1 x. 

rN 
(41) 

In order to compute P2, it is necessary to know the 
dependence of E 1 or x upon the beam current, Io. 
Equations (24) or (37) do not furnish this information, 

but the relation can be obtained indirectly from (38). 
Values may be substituted in (38) or (38a) to obtain 
the value of the transreduction factor x/2J 1(x) cor­
responding to the assumed value of the beam current Io. 
The relation between the bunching parameter x and 
x/2J 1(x) can be obtained from a table of Bessel func­
tions, or from Fig. 7, which is a curve of 2J 1(x) as a 
function of x. This relation between x and x/2J1(x) is 

BEAM CURRENT i_ 

Fig. 12-Power output as a function of beam current. Several modes · 
corresponding to different transit times are shown. 

given in Fig. 11 for all values of r' between zero and 
10.17, corresponding to the third zero of the Bessel 
function, but only the unshaded region is of importance 
in the normal operation of a reflex-klystron oscillator. 
The value of x/211(x) computed from (38) or (38a) is 
used with Fig. 11 to obtain values for x and J1(x) cor­
responding to the assumed value of the beam current 
10 , and the power can then be computed from (41). 

Curves of power delivered by th~ bunched beam as a 
function of beam current Io, computed in the manner 
described above, are shown in Fig. 12 for various values 
of N. Those curves not only show the increase of power 
as the current is increased above the starting value, but 
also indicate that the maximum power from a reflex 
oscillator and the starting current are inversely propor­
tional to N, the number of cycles durin.g transit in the 
reflection field. In other words, increasing the number of 
cycles required for bunching, either by reducing the re­
flector voltage or actually changing the tube design by 
increasing the reflector spacing, will decrease the output 
which can be obtained but will permit the tube to be 
operated with a smaller beam current. 

It would be interesting to investigate the region in 
Fig. 11 where x/211(x) has a negative value. The nega­
tive sign has the same significance as the negative por­
tion of the Bessel-function curve; i.e., when the bunch­
ing parameter xis greater than 3.83, t):ie Bessel function 
becomes negative and the phase of the bunched beam 
is shifted 180 degrees. 10 Reference to (35) will illustrate 
the effect of this phase shift. Oscillation can occur only 
when the equivalent beam conductance is negative. Nor­
mally, this condition is met when the phase angle q, is 
zero and the Bessel function has a positive value. How­
ever, if the phase angle is 180 degrees, corresponding to 
the usual region of nonoscillation, but the resonator 
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voltage is made large enough to give a negative value 
of ] 1(x), then the beam conductance defined by (35) 
is also negative. Oscillation would not be self-starting, 
but might be maintained if the beam current was suf­
ficiently high and the correct value of resonator voltage 
was obtained by overdriving the resonator. 

If any of the variables other than current are changed, 

• 1.1,~---~----,-------, 

i ... 
~ 
+ 
f~I-J-~~----+-------1 
w 
z 
I= 
I 

E 
!~.1-i-----1-----~~~-=-----l 
i 
li z .. 
u 
ii: 
ti 

0 11, 10 111 

TRANIREDUCTION FACTOR _X_ • p•1tNioR1R••••. 
2J1(X) E0 (R1+R~I 

Fig. 13-Universal curve for the efficiency of a reflex­
klystron oscillator. 

such as the load resistance or the phase angle cf,, the use 
of curves to show the effect of each variable becomes 
quite complicated. Fortunately, all of the variables can 
be combined into dimensionless parameters and the 
characteristics can be presented in a universal curve as 
illustrated by Fig. 13. The transreduction factor 
x/2J 1(x) in (38) is one example of a useful dimensionless 
parameter and the efficiency parameter to be derived 
below is another example. 

The power delivered by the bunched beam, defined 
by (41), is not all useful power since some is absorbed 
by the resonator losses. We are more interested in the 
power delivered to the load, which will be designated 
PL. Then 

Rs RsEol o cos ,t, 
PL = --- P2 = - ~xl1(x). (42) 

RL + Rs 1rN(RL + Rs) 

If we divide the power output by the beam power input 
we obtain the efficiency of the klystron oscillator. Equa­
tion (42) can be rearranged so that the efficiency (ab­
breviated "Eff.") and the other factors involved are 
related to a dimensionless efficiency parameter xl1(x). 

1rN RL + Rs 
xl1(x) = -- --- Eff. 

cos cf, Rs 
(43) 

Fig. 13 combines these two dimensionless param­
eters in a single curve which relates the output char.:. 
acteristics of a reflex-klystron oscillator to the design 
factors which may be varied. The vertical co-ordinate 
is xJ 1(x) and x/2J1(x) is the horizontal co-ordinate. 

EFFECT OF VOLTAGE, CURRENT, AND LOAD ON 

KLYSTRON OUTPUT 

Most of the output characteristics which are typical 
of reflex-klystron oscillators can be predicted by in­
spection of Fig. 13. Consider the case when the load, 
beam current, and acceleration voltage remain fixed, 
but the reflector voltage is varied. Assume that the 
phase angle cf, is 1r/2 for zero reflector voltage; i.e., when 
the reflector electrode is at cathode potential. Cos cf, 
will be zero, corre~ponding to an operating point at the 
origin in Fig. 13. Increasing the negative reflector volt­
age will decrease cf, and cos cf, will vary from zero to a 
maximum of unity and then decrease again. The value 
of N will also vary, but if N is large this variation is not 
important in a qualitative analysis, and N will be as­
sumed a constant for the range of each voltage mode. 

When cos cf, is zero, the transreduction factor x/2J1(x) 
is also zero, since the value of x/211(x) is determined by 
(38) or (38a). 

(38) 
x fJ21rNI0RsL 

--- =----cos q,. 
2J1(x) Eo 

Oscillation will not occur until cos cf, has increased until 
the value of x/2J1(x) is unity. As cos cf, increases beyond 
this point, the output will increase as shown by Fig. 
13. When cos cf, is unity, x/2J1(x) will have its maxi­
mum value and the output will also be maximum. This 
is true for the region where the efficiency curve is de­
creasing because the cos cf, term increases faster than the 
efficiency parameter in Fig. 13 decreases. As the reflector 
voltage is increased beyond the value giving maximum 
output, the phase angle becomes negative, and cos cf, 
decreases until the output is again zero. 

As the reflector voltage is increased further, the sign 
of cos cf, will become negative and the beam-conductance 
term in (35} has a positive value. This positive beam 
conductance represents an additional loss, therefore 

REFLECTOR VOLTAGE 

Fig. 14-Power-output and frequency characteristics when the 
reflector voltage of a reflex klystron is varied, 

oscillation does not occur. When the transit time has 
changed by an amount equivalent to one complete cycle, 
the phase is again correct for oscillation and another 
output mode will occur. Normally, there are several of 
these voltage modes, and oscillation does not occur in 



Authorized licensed use limited to: Columbia University Libraries. Downloaded on January 22,2021 at 20:04:45 UTC from IEEE Xplore.  Restrictions apply. 

108 P Proceedings of the l.R.E. and Waves and Electrons March 

the region between modes where the phase angle is in­
correct. This behavior is illustrated by Fig. 14. 

The higher reflector-voltage modes correspond to 
smaller values of N and the output is greater for two 
reasons: first, the ordinate xl1(x) in Fig. 13 becomes 
greater as N is decreased, since decreasing N corre­
sponds to moving from right to left on the curve in Fig. 
13; second, the efficiency for a particular value on the 
curve is inversely proportional to N. Eventually it is 
no longer possible to observe modes with higher reflector 
voltage because N has become so low that the starting 
current is greater than the beam current. The last mode 
observed may have the highest output of the series, or 
it may have less output than the previous mode. The 
latter case corresponds to a point in Fig. 13 to the left 
of the maximum of the curve. 

The maximum theoretical efficiency of a reflex-klys­
tron oscillator is less than the value for a double­
resonator oscillator, and is inversely proportional to N. 
The efficiency for any value of N can be calculated from 
Fig. 13. If most. of the power is transferred to the load 
and the phase angle is adjusted for maximum output, 
then (43) may be rewritten 

xJi(x) 1.25 
maximum efficiency = --- = -- • ( 44) 

1rN 1rN 

The assumptions used in this derivation are not valid 
for small values of N, and theoretical efficiencies be­
tween 20 and 30 per cent are indicated when better 
approximations are made in the computation of effi­
ciency for values of N less than two. 

It is interesting to note that the efficiency obtainable 
.for any mode is independent of the beam coupling co­
efficient. If the transit time across the resonator gap 
is large, making the value of {3 less than unity, then it is 
theoretically possible to overcome this disadvantage by 
increasing the beam current. The power output will be 
greater because the same maximum efficiency requires 
more power input. If sufficient beam current is available 
so that the load resistance RL is small in comparison 
with the shunt resistance of the resonator:Rs, the effect 
of a small value of {3 may be counteracted by decreasing 
the load; i.e., increasing the value of RL, . 

If the output load impedance is varied (by varying 
the length of the output line or some other method of 
impedance transformation), the output will increase to 
a maximum, then decrease suddenly and the klystron 
may refuse to oscillate for cer_tain load impedances. This 
effect occurs first for the higher reflector-voltage modes 
because the starting current is higher for these modes. 
When the beam current is constant the load required 
for maximum output is different for each mode. Heavier 
loading is required for maximum output from the modes 
corresponding to the larger values of N. 

This effect can be demonstrated conveniently with a 
dynamic method of observing the output. An alternat-

ing voltage can be superimposed upon the reflector volt­
age, causing the output to be swept through several 
modes periodically. The output voltage is applied to a 
cathode-ray oscilloscope with the sweep synchronized 
with the reflector-voltage modulation. A pattern similar 
to Fig. 14 will be observed. If the klystron is lightly 
loaded, all of the modes will be small, but the higher re­
flector-voltage modes will increase until the mode with 
the smallest value of N corresponds to the point of 
maximum efficiency on Fig. 13. Increasing the load fur­
ther will decrease the output from the highest voltage 
mode until it disappears when the transreduction factor 
becomes less than unity. The other modes with larger 
values of N will continue to increase in output, with the 
modes disappearing successively until the load is so 
great that the klystron cannot oscillate at any reflector 
voltage. 

ANALYSIS OF ELECTRONIG TUNING 

The qualitative analysis based on Fig. 9 predicted 
that the frequency of oscillation would change as the 
phase of the bunched beam was varied by changing the 
acceleration voltage or the reflector voltage. This effect 
is known as electronic tuning. The power output and 
efficiency relationships were obtained by considering 
only the conductance components of the beam and 
cavity admittances. Similarly, the electronic-tuning 
analysis requires the sum of the susceptances to be zero. 
The magnitude of the beam susceptance depends upon 
the strength of oscillation, however. As a result, the 
imaginary component of the beam admittance depends 
upon the magnitude of the real component. 

Equation (36) may be rewritten 

2/jlo.li(x) 1 
----=----

E1 RsL cos q, 
(45) 

Then (45) may be substituted in the imaginary term 
of (35) to obtain the value of the beam susceptance in 
terms of the phase angle q,. 

2{jl 0.li(x) . sin q, tan q, 
---- sm q, = ---- = -- · (46) 

E1 RsL cos q, RsL 

Equating all susceptance terms in the resonator and 
beam admittances to zero gives an expression which. 
may be used to determine the frequency of oscillation. If 
w is the angular frequency of oscillation for any phase 
angle, and wo is the angular frequency corresponding to 
zero phase; i.e., the resonant frequency of the cavity, 
then 

1 tan q, 
--+wc+--=0. 

wL RsL 
(47) 

Rearranging terms gives 

RsL (Wo ) -- - - wwoLC = tan q,. 
woL w 

(47a) 
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But R 8 L/w 0L is equal to the loaded Q of the resonator, 
QL and LC is equal to 1/wo2, therefore 

( WO "') QL - - - = tan ct,. 
W Wo 

(47b) 

When w apd w0 do not differ by more than a few per 
cent, ((w 0/w)-(w/w 0)), may be rewritten 

WO W 

W Wo 

Wo - W !J.j 
2--=2-

w f 
(48) 

and ( 4 7b) becomes the familiar expression for the phase 
of a parallel-resonant circuit. 

!J.f 
2QL- = tan ct,; 

f 
(49) 

The term 2 QiAJ/f is a convenient frequency-deviation 
parameter which is often used in universal curves for 
resonant circuits. It relates the actual frequency devia­
tion to the loaded Q of the circuit. 

Equation (42) and Fig. 13 allow the power output to 
be calculated as a function of the phase angle cf,, and the 
frequency deviation from the resonant frequency of 
the cavity can be obtained from (49). However, it is 
more useful to know these characteristics as a function 
of voltage instead of phase. Equation (9), repeated be­
low, 

• Jm Eo 
'V 2e 

N = 4Jso---­
Eo + E, 

(9) 

may be substituted into (33) to obtain a value of cf,, and 
this value of cf, may then be substituted into (42) and 
(49), giving the output power and frequency character­
istics as a function of reflector voltage. Fig. 14 was ob­
tained in this manner. 

Fig. 15 repeats the characteristics shown in Fig. 14 
for a single mode and a number of different va:lues of 
loaded Q. The curves for heavy loading correspond to a 
load which is almost great enough to prevent oscilla­
tion. Curves are also shown fo~ the loading which gives 
maximum output, and very light loading when most of 
the power is absorbed by the resonator losses. 

A number of interesting conclusions are illustrated by 
Fig. 15. The slope of the linear portion of the frequency 
characteristic is inversely proportional to the loaded Q 
of the resonator. This fact is apparent from (49), but 
only the trend is indicated by Fig. 15, since actual val­
ues of Q L are not given. Increasing the Q by decreasing 
the load does not decrease the electronic-tuning band­
width as· might be expected, since this change will in­
crease the bunching and the phase angle may be varied 
over a larger range before the output decreases apprecia-

bly. The bandwidth between zero-output points actually 
increases as the loading is.decreased, and the bandwidth 
between half-power points is decreased only slightly. 
Decreased loading causes the amplitude characteristic 
to become more uniform over a large range of voltage, 
but the frequency-deviation curve becomes quite non­
linear. 

These qualitative conclusions are interesting, but a 
method of calculating the bandwidths is more valuable. 
The desired equations may be obtained by evaluating 

OPtlMUM LOADING 

HEAVY LOADING --...... "' / ' ; I \ 
f _________ )lt;lfI_l.{M,Jlll/i __________ _ 

,,,~- \ ......... ,, 

IIEfLECTOR VOLTAGE 

Fig. 15-Power-output and frequency characteristics 
for different loads. 

the phase angle cf, for the output being considered, and 
substituting this value of cf, in (49). This process will be 
carried out for the zero-power point and also the half­
power point. Equation (38a) may be rewritten 

Eo(Rs + RL) x 
cos ct, = ---- -- · (SO) 

{J21rNI0RsRL 2J1(x) 

For zero output, the value of x/2J 1(x) is unity; therefore 

and 

Eo(Rs + RL) 
cos cJ,o = -----, 

{J21rNI0RsRL 

tan cJ,o = • / __ l_ - 1. 
V cos2 cJ,o 

(51) 

(52) 

Note that cos cf,o; i.e., the cosine of the phase angle when 
the output is zero, has a value equal to the reciprocal 
df the transreduction factor x/2J 1(x) for the operating 
conditions when the phase angle is zero, corresponding 
to maximum outP.ut. Therefore, (52) may be rewritten 
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tan cl>o = ✓CJ:x) Y-1. (52a) 

The bandwidth between zero-output points is ob­
tained bv substituting (52) in (49). However, the fre­
quency deviation AJ/f is measured from the point of 
maximum output; therefore, the bandwidth between 
zero-output points will be twice the value indicated by 
(49). The term (2Af /J)o will be introduced to avoid con­
fusion between the bandwidth between the two zero­
output points and the frequency deviation from the 
frequency corresponding to maximum output. Then 

2QL ( 2!:.f) = 2 tan cl>o = 2 • /_l_ - 1. 
h o/ co~ct>o 

(53) 

Evaluation of the bandwidth between half-power 
points is somewhat more complicated, and requires the 
determination of the bunching-parameter value which 
corresponds to one half of the maximum output. The 
power output for any operating condition is the square 
of the peak voltage E1 divided by twice the load resist­
ance RL. 

E12 Eo2x2 
PL = -- = -----

2RL 2/3271"2 N2 RL 
(54) 

Equation (37) has been substituted for E1 in (54). The 
v~lue of the bunching parameter x for maximum output 
can be obtained from Fig. 11 with cos <p equal to unity. 
This maximum output does not necessarily correspond 
to the point of optimum efficiency in Fig. 13, but is the 
maximum output for the given conditions of load and 
input when the phase angle is zero. These conditions de­
termine the value of x/2J1(x) and xis then determined 
from Fig. 11. This value of x divided by V2 is the value 
of the bunching parameter which corresponds to the 
half-power points. Substituting this value of the bunch­
ing parameter in (50) gives 

Eo(Rs + RL) 

cos "'1' 2 = {321rNI0RsRL 2Ji(x/v2) 

x/y2 
(55) 

Equation (55) may also be written 

2J1(x) x/y2 
cos ct>112 = -x- 2Ji(x/v2) (55a) 

A definition for the bandwidth between half-power 
points, similar to the definition for zero-output condi­
tions, gives 

2QL ( 2!:.f) = 2 tan cl>112 = 2 • / 2
1 - 1. 

j 1/2 o/ cos cl>112 
(56) 

These expressions may appear complicated, but the 
evaluation of cos ¢112 from Fig. 11 is quite simple. The 
method can be illustrated by a ,sample calculation. As-

sume that x/2J1(x) equal to 2.30 corresponds to the 
operating conditions when the phase angle is zero. This 
corresponds to maximum output from the tube. The 
bunching parameter x for this value of x/2J 1(x) is 2.40, 
as indicated by the curve in Fig. 11. The value of x for 
the half-power point would be 2.40/v2 or 1.70, and 
corresponds to x/2J1(x) equal to 1.47. Cos ¢ 112 is then 
1.47 /2.30, or 0.64. Subs~itution of this value of cos ¢ 112 
in (56) gives a value of 2.40 for 2QL(2Af/fh12-

The calculations for bandwidths between zero-output 
and half-power points have been made and the results 
are plotted in Fig. 16 as a function of x/2J 1(x), the 
transreduction factor. A dotted line has been drawn 

-s. ., 
-!!.. 
rf 20,f------+-----z<t,1£_-----l .. 
" z z 
::, 
1-

u z 
i10,f-------f-----f-=-~==-----i 

~ 

5 10 15 

TRANSREDUCTION FACTOR _X_ , p•nNioR■RL cos ♦ 
2J1(X) E0 (R1+R.) 

Fig. 16-Universal curves for the electronic tuning 
of a reflex oscillator. 

through the origin and tangent to the curve for the 
bandwidth between half-power points. Since QL is pro­
portional to RsRd(Rs+RL), this dotted line is pro­
portional to QL and (2Af /f)1 12 will be a maximum at the 
point of tangency. In other words, the maximum band­
width between half-power points occurs when the con­
ductance parameter has a value of approximately 2.30, 
the same as the value required for optimum output from 
the tube. 

It is interesting to note that the bandwith between 
half-power points for a single resonant circuit is 2.00 
when using these co-ordinates for the frequency devia­
tion. The value for a reflex-klystron oscillator with the 
load adjusted for maximum bandwidth is 2.40, or 20 
per cent greater than the bandwidth associated with the 
loaded Q of the resonator. Increasing the bunching by 
increasing the beam current, decreasing the loading, or 
in any other manner which increases the value of 
the transreduction factor, will increase the value of 
2QL(2Af /Jh12. However, it is not correct to state that 
the electronic tuning of a reflex klystron is independent 
of the loaded Q of the resonator. The frequency devia­
tion in the linear region is inversely proportional to 
QL, but increasing QL by reducing the load causes 
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overbunching and the tube can oscillate over a wider 
range of voltage variation. As a result, the half-power 
point is extended into the nonlinear region of the fre­
quency-deviation characteristic and the actual fre­
quency bandwidth (2/lf /fh12 decreases only slightly 
from the maximum bandwidth when the oscillator is 
loaded to give maximum output. 

EFFECT OF LOAD VARIATIONS 

Some of the effects of varying the load have been 
mentioned in the discussion of Figs. 13 and 15. The 
previous discussion assumed that the load can be repre­
sented by an equivalent shunt resistance RL. This 
equivalent resistance has a magnitude similar to the 
shunt resistance of the cavity resonator; i.e., RL is 

l,J,,------.------.------, 

o,'--'------=--..__ _ _,IO_..::,,,... _ ____,,a 

TRANSREDUGTION FAGTOR _x_ a ,•nNioR1RLco1 ♦ 
~J,(X) Eo (Ro+RLI 

Fig. 17-Efficiency of a reflex oscillator as a function of load. 
Curves for three values· of beam current are shown. 

usually· several thousand ohms. The characteristic 
impedance of the coaxial output line is very much 
smaller, usually in the order of magnitude of 100 ohms 
for convenient physical dimensions, and the coupling 
loop must be designed to transform an impedance of 
perhaps 100 ohms to the required value of several 
thousand ohms. Some tubes are manufactured with 
coupling loops which are fixed in size and position; in 
this case, the equivalent load resistance can be changedr 
only by changing the load itself or by using some type 
of impedance transformer between the load and the 
coaxial output terminal. Other tube types may also 
permit variation of the size· or position of the coupling 
loop as a means of adjusting the load. 

If a variable length of line is used as an impedance 
transformer, the resistive component of the load can be 
varied, if there are standing waves in the line, but a 
reactive component may also be introduced. This re­
active component will affect the frequency of oscilla­
tion. The analysis of this effect will not be considered 
in detail in this paper. However, the effect is quite im­
portant and should not be overlooked when using these 
tubes. 

Frequency changes may also be caused by changing 
only the resistive component of the load if the phase 
angle ct, is not zero. Consider a case illustrated by Fig. 15 
when the reflector voltage does not correspond to the 
adjustment for maximum output and the frequency 
deviation is not zero. Decreasing the load will decrease 
the frequency deviation. This effect is also indicated 
by the magnitude of the beam susceptance in (47). De­
creasing the load corresponds to increasing the load 
resistance RL, and this change also increases the effec­
tive shunt resistance RsL; therefore, decreasing the load 
will decrease the effective beam susceptance and the 
frequency deviation will be less. This effect becomes 
greater when the reflector voltage deviates from the 
value required for maximum output. 

If most of the power is not transferred to the load, 
then the derivation of the maximum efficiency in (44) 
does not apply, and the efficiency is dependent upon the 
load resistance. Actually, RL must be small compared to 
Rs if most of the power is to be transferred to the load, 
and this condition can be obtained only if the beam cur­
rent available is very much larger than the starting 
current. The maximum efficiency is less than the theo­
retical value for practical values of beam current. If 
the beam current is seven times greater than the starting 
current, the maximum value of the x/2J 1(x) co-ordinate 
in Fig. 13 will be 7 .0 when RL is infinite, corresponding 
to no load. The output will be zero under these con­
ditions and the efficiency will also be zero, since, 
(RL+Rs)/Rs becomes infinite. As RL is decreased cor­
responding to increasing the load, the output will in­
crease. 

Nfamily ·of curves similar to Fig. 13 can be plotted 
to show the effect of power division between the 
resonator losses and the load. The factor (RL+Rs)/Rs 
in the ordinate of Fig. 13 is computed for each value of 
RL considered, and the ordinates for the revised effi­
ciency curves in Fig. 17 are directly proportional to_the 
output efficiency. Each curve corresponds to some 
chosen value of beam current Io and 1rN times the 
efficiency is plotted as a function of RL. The other 
variables in the transreduction factor are held constant. 
The phase angle ct, has been assumed to be zero in this 
illustration, corresponding to the voltage adjustment 
for maximum output, therefore cos ct, is unity and has 
not been included in the efficiency co-ord~ilate. 

If the beam current Io were equal to the starting cur­
rent ls, the transreduction factor x/211(x) would have 
a value of unity. The load would be zero, corresponding 
to an infinite value of RL. When 10 is seven times greater 
than ls, the value of x/211(x) would be 7.0 if the load 
resistance RL was infinite. The output would be zero, 
of course. Decreasing-RL would increase the load, and 
the efficiency would increase until a maximum was 
reached. Eventually the load would become too great 
and the tube would fail to oscillate when RL was 
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reduced until x/211(x) had a value of unity. Similar 
curves are shown for values of Io twelve and twenty 
times greater than the starting current. Note that the 
actual efficiency is only 90 per cent of the theoretical 
efficiency when the beam current is twenty times greater 
than the starting current. 

Fig. 17 may also be used to compare the efficiencies 
for different values of N when the beam current re­
mains constant. These conditions can be met by chang­
ing the reflector voltage. Consider that the curve in 
Fig. 17 for seven times the starting current corresponds 
to a value of N equal to 2¾ cycles, and the curve for 
12 times the starting current corresponds to the same 
beam current but a value of 4¾ cycles for N. Then 
the actual efficiency for optimum loading would be 
0.87/2.751r or 10.1 per cent for N equal to 2¾ cycles, 
and 1.01/4. 751r or 6.8 per cent for N equal to 4¾ cycles. 
Although the loading required for maximum output is 
less for the mode with the shorter transit time, and 
therefore a larger proportion of the total power is 
dissipated in the resonator losses, the improved con­
version efficiency for the shorter transit time allows the 
output efficiency to be greater. 

REFLEX-KLYSTRON DESIGN CONSIDERATIONS 

Most of the previous discussion has been used to 
predict or explain the electrical characteristics of re­
flex-klystron oscillators when operating voltages, cur­
rent, and loading were the only variables. It is inter­
esting to consider the effect of varying the design of the 
tube itself, although it is necessary to remember that 
the relation between the lumped constants used in the 
equivalent circuit and the physical dimensions of the 
cavity resonator is not clearly defined. However, con­
sidering the effect of changing these constants can be 
quite useful in a qualitative analysis of the factors which 
are important in the design of klystrons. 

Reference to the equivalent circuit in Fig. 8 will indi­
cate that increasing the ratio of the small-signal beam 
admittance to the circuit capacitance will increase the 
amount of electronic tuning. This ratio may be increased 
by increasing the beam current Io, increasing the transit 
time in the reflection space (increasing the value of N), 
or by decreasing the circuit capacitance. Decreasing the 
capacitance by increasing the resonator-gap spacing 
may not be satisfactory because the transit time across 
the gap may become excessive. This change would re­
duce the beam coupling coefficient, which has the same 
effect as reducing the beam current. Therefore we will 
only consider reducing the capacitance by decreasing 
the area of the resonator gap. 

Either increasing the beam ·current without changing 
the capacitance, or reducing the area of the gap without 
changing the current, corresponds to increasing the 
current density. Therefore the problem of increasing 
the electronic tuning in a klystron design becomes a 

problem of increasing the current density. This con­
clusion assumes that N is already large and that addi­
tional transit time in the reflection space will not in­
crease N appreciably. 

It is equally interesting to analyze the factors affect­
ing electronic tuning from the viewpoint that increased 
electron bunching permits heavier loading of the oscil­
lator, and therefore increases the electronic tuning be­
cause the loaded Q has been reduced. Reference to 
Figs. 11 and 13 will emphasize the fact that the bunch­
ing parameter x has a value of 2.40 when the oscillator 
is adjusted for maximum output. If the beam current 
is increased, with no design change in the resonator, the 
resonator voltage E 1 will be increased and the value of 
the bunching parameter will increase. The magnitude of 
E1 is determined by the radio-frequency current i2 and 
the loaded shunt resistance RsL-

(51) 

Since E 1 must be constant if x remains constant, an 
increase in Io must be accompanied by a decrease in the 
loaded shunt resistance RsL• Therefore the increased 
beam current permits the oscillator to be operated with 
a greater load, and reducing the Q of the loaded circuit 
increases the electronic tuning. 

The effect of decreasing the capacitance may also be 
related to the loaded Q of the resonator. One of the 
relations giving the Q of a circuit is 

The unloaded Q of the circuit will be 

Q = wCRs, 

therefore (58) may be rewritten 

RL 
QL = Q Rs+ RL 

(58) 

(59) 

(60) 

Decreasing the circuit capacitance by reducing the 
resonator-gap area without changing the gap spacing 
does not change the unloaded Q appreciably, but does 
increase the shunt resistance Rs. This change will not 
affect the loaded shunt resistance RsL, since RL is 
usually much smaller than Rs; therefore, the oscillator 
will operate with the same degree of bunching if the 
beam current and the load resistance RL are unchanged 
However, (60) indicates that the loaded Q will decrease 
when the shunt resistance is increased, and the elec­
tronic tuning will be increased. 

Note that the changes discussed in all of the pre­
ceding paragraphs correspond to increasing the curent 
den!lity in the electron beam. The various explanations 
of the electronic tuning are merely different ways of 
looking at the problem. 
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The design of an efficient, high-power reflex-klystron 
oscillator would require a different approach. The im­
portant design factor would be the transit time in the 
reflection space, therefore N must be small. As pointed 
out in the discussion of (44), the analysis is not valid 
for small values of N, but the trend is indicated cor­
rectly. Decreasing N increases the starting current, and 
if the beam current is already as large as permitted by 

a 
e 
m 

=deceleration caused by retarding force F. 
= charge of an electron. 
=mass of an electron. 
=time. 
=departure time when an electron leaves the reso­

nator gap. 
= arrival time when an electron returns to the 

resonator. 
a practical design, then the load required for optimum 
output cannot be very great and the electronic tuning 
will be small. It is also apparent that the theoretical 
efficiency will not be attained if a large part of the total 
power goes into the resonator losses. In spite of this 
factor, however, the efficiency will be greater than that f 
of a reflex klystron designed for a larger value of N. If 

T 
To 

N 

w 

= transit time in the reflection field. 
= transit time in the reflection field of an electron 

with average velocity v0• 

= number of oscillation cycles during transit of the 
reflection space. 

= frequency of oscillation. 
=21rf. 

it were possible to increase the beam current sufficiently 
so that most of the power could be transferred to the 
load, then the klystron would have as much electronic 
tuning as a design with a larger value of N and smaller 
beam current. 
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APPENDIX I 

GLOSSARY OF SYMBOLS 

Eo = beam voltage or acceleration voltage. 
Er =reflector voltage (voltage between cathode and 

reflector electrode). 
E 11 =control-grid voltage. 
E =instantaneous value of radio-frequency voltage 

across resonator gap. 
E1 =peak value of radio-frequency voltage across 

resonator gap. 
Io · =average beam current (value of direct current). 
latart=minimum value of beam current required to 

maintain oscillation 
12 =instantaneous value of bunched beam current. 
i-J =fundamental component of radio-frequency cur-

rent in the bunched beam. 
cf, =phase angle of bunched beam current. 
v =velocity of an electron. 
Vo =average velocity of an electron (corresponds to 

Eo). 
s = distance measured from resonator gap. 
so =spacing between resonator gap and reflector elec­

trode. 
F = retarding force due to reflecting field. 

Wo 

X 

= 21r times the resonant frequency of the cavity. 

= bunching parameter equal to f37r N!:. 

= Bessel function of first kind and nth order. 
= Bessel function of first kind and first order. 
=spacing of resonator gap. 
= transit angle across the resonator gap. 

dl . ffi . l sin o/2 
=mou at1on coe c1ent equa to o/Z . 

Rs =shunt resistance of the cavity resonator. 
RL = equivalent load resistance. 
RsL = loaded shunt resistance of the cavity resonator. 
L = equivalent inductance of the cavity resonator. 
C =equivalent capacitance of resonator gap. 
Q =unloaded Q of the cavity resonator. 
QL =loaded Q of the cavity resonator. 
Y. = total admittance of the cavity resonator. 
Y2 =equivalent admittance due to the bunched beam. 
P 2 = power delivered to the resonator and load. 
PL = power delivered to the load. 
Eff. =efficiency (ratio of radio-frequency output power 

to beam-power input). 
x/2J 1(x) =transreduction factor (magnitude of the 

ratio of small-signal transadmittance 
to large-signal transadmittance). 

xJ 1(x) =uni_versal efficiency parameter for reflex 
klystrons. 

2Qd1//j =frequency deviation from resonant fre­
quency of the cavity. 

2QL(2Af /f)o = bandwidth between zero-power-output 
points. 

2QL(2Af /!)1 12 = bandwidth between half-power points 
(frequently called electronic-tuning 
bandwidth). 


