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-,enhai/"'Cd for a relativistic plasma (Beard, 1959), Imre (1962) has con-
, si 'ered 'the problem of electromagnetic wave propagation in relativistic
plasmas in detaiL. As an example, he obtains for propagation along the

field, to first order in kT/mc2,
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which is to be compared with (3.4,13), Johnston (1962) has developed

weakly relativistic expansions, obtaining, for example, for electromagnetic
waves in a plasma with no magnetic field
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which is to be compared with (3.4,22),
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CHAPTER 4

Wave propagation through

bounded plasmas

4.1 Introduction

The preceding chapters have been concerned with the propagation of
electromagnetic waves in an infinite plasma, We now consider the effect
of plasma boundaries on the propagation, To study high-density dis-
charges of arbitrary size and geometry, one is generally forced to use
microwave beams directed through the plasma by means of suitable
antenna systems. The alternative situation in which the plasma is located
within a cavity or waveguide, or is itself a waveguide, is considered in
Chapter 5, The "free-space" beam technique is favorable where the
dimensions of the plasma are larger than the wavelength of an electro-
magnetic wave at the plasma frequency, Both classes of measurements

are essentially limited to frequencies w~wp, the plasma frequency (except
for special techniques exploiting a static magnetic field or a detailed

independent knowledge of the density profile). Thus, the beam technique
is most readily analyzed when

2 J Wp 2 ,W))1.C/D)2, (4,1.)
where D is the dimension of the plasma. The first of these two inde-
pendent conditions permits convenient simplifications in the analysis by
avoiding the plasma resonance; the second is essentially a diffraction
condition which permits reducing the problem of propagation of a finite
beam of electromagnetic waves through a finite plasma to a one-
dimensional, plane-wave problem, as a first approximation.

The propagation constant of a microwave beam in a plasma has been
117
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,shown,H1Chapter 1, to depend upon the magnetic field, electron density,
arid collision frequency, and indirectly upon the temperature, The
following basic arrangements, sketched schematically in Fig, 4,1, are

useful in the case of high-temperature, highly ionized plasmas (that is,
V((wp),

(1) Simple transmission or reflection, For electron densities n -: nc the
plasma is transparent, while for n;: nc it is opaque and totally reflecting,
where nc=(£omje2)w2 is the critical density.! The transition between

1 In the presence of a magnetic field, the effective critical deiisity may be altered.

However, the situation is qualitatively unchanged.
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these conditions is sharp, Thus, in principle, this elementary technique

indicates whether the plasma density is above or below the critical value,
Measurement at a given frequency is capRble of determining only one value
of density, The sharpness of the transition implied by the sudden change

in the attenuation coeffcient is not realized in practice because of the

following factors,

(a) For densities below but approaching critical, the dielectric constant
discontinuity at a sharp boundary produces an increasingly strong surface
reflection (and corresponding reduction in transmission).

(b) If the plasma is only a few wavelengths thick, interference effects
occur between the surface reflections,

(c) Inhomogeneous density distributions are not averaged in a simple
manner.

(d) Refraction and scattering by the plasma occur because of inade-

quacies in the one-dimensional, plane-wave approximation.

If the plasma density is far above critical, an impinging signal is strongly
reflected at the boundary, Therefore, motions of the effective boundary
produce doppler shifts in the frequency of the reflected signaL.

(2) Phase shift (microwave bridge or interferometer), If the signal from

an auxiliary transmission path, with adjustable amplitude and phase
elements, is balanced against the primary transmission signal to give a null
in the absence of plasma, the output signal of the waveguide (hybrid) junc-
tion is a measure of the attenuation and phase shift in the primary path due
to the plasma, In the fully transparent region of electron density, where

n((nc, a detected signal represents only phase shift which, in turn, is
essentially a function of electron density only, Since the shift in phase
can be calibrated, one has a continuous measurement of density between
the upper limit of serious amplitude effects in the transmission path, and
the lower limit of detector sensitivity. This technique is ideally suited to the
observation of density as a function of time.

The propagation of the microwave beam through the bounded plasma
is most readily analyzed in two limiting cases: first, the gradual boundary,
with density varying slowly over a wavelength, to which an adiabatic
analysis may be applied; and, second, the sharp boundary which can be
attacked as a boundary-value problem, A formally similar situation
occurs in quantum mechanics, in which the first case is known as the
WKB approximation (Bohm, 1951). The usual geometrical optics limit
partakes of both the above limits. It neglects reflections at the "sharp"
boundaries which separate -regions of different propagation characteristics
and, thus, can be self-consistent only for plasmas large compared to a
wavelength. The models of plasma geometry that are most useful for
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Therefore
_ 3 p2 f 2 . I 5 p3 f 3. .

¡JCPi - 2 ¡JCP2 - 32 cw3 n (x) dx + 256 cws n (.,) d.' + ' . . (4,2,13)

and we obtain for the first two averages of the distribution

!w f n dX=4n¡JCP2-~ (¡Jcpi-2¡JCP:i)) + 1~8 :~s f n3 dx+, ., rp2 f 32 f 15 p3 f L
cw3 n2 dx=-r L (¡JCPi-2¡JCP2)-256 cws n3 dx-". r

The usefulness of this approach is limited by the accuracy of 
the differential

measurement ¡JCPi - 2 ¡JCP2' When this quantity can be successfully

measured, (4,2,14) provides a refined evaluation of the average density
and (4,2.1 5) an estimate of the mean-square density,

Procedures for obtaining profile information have been developed by
Motley and Heald (1959) and by Wharton and Slager (1960). Wharton
and Slager use only the magnetic-field-independent parallel-polarization
case. Their data-reduction procedure is to calibrate the peak electron
density by means of the cutoff of a "low-frequency" wave, and obtain
information from the simultaneously observed phase shift of a "high-
frequency" wave, Motley and Heald, using different polarizations,
calibrate the average density with the high-frequency wave, infer profie
from the low-frequency wave. Because of the greater phase-shift non-
linearity of the perpendicularly polarized wave near cyclotron resonance,
the multiple polarization technique, when applicable, is somewhat more
sensitive, The Wharton and Slager technique provides profile informa-
tion only at the instants of time for which cutoff occurs; the Motley and
Heald technique is limited to situations where the cyclotron frequency is
comparable to the plasma frequency and is accurately known, Both
methods benefit from additional phase-shift data channels at other
frequencies and/or polarizations, at the expense of instrumentation and
data-reduction complexity, Neither method is able to distinguish a hollow
discharge from a peaked one, Experimental applications of these
principles are discussed in Sections 6,4 and 6.5.

4.2.3 Reflections from cutoffs and resonances. Cutoffs, at which the

index of refraction ¡i -+ 0, and resonances, at which ¡i -+ 00, occur for
certain combinations of frequency, density, and magnetic field, When a
wave propagating in an inhomogeneous plasma impinges upon regions
having these special characteristics, reflection and absorption must be
considered even in the adiabatic approximation, Near the cutoff, the
wavelength grows large, while near the resonance the wavelength becomes
small. In both cases, the group velocity goes to zero, The analysis of

this situation is formally identical to that resulting in the so-called turning-
point connection formulas of the quantum-mechanical WKB approxima-
tion (Schiff, 1955), It can be shown that in the case of a cutoff the wave is

(4,2,14)

however, we do not restrict our consideration to this first-order case, but
stil retain the adiabatic approximation, we can (1) expand the ¡JcP integrand

to higher orders, in which case the integrals obtained are higher-order

averages of the distribution function (for example, f n2(x) dx); or (2)
integrate ¡JcP directly using an appropriate distribution function,

In either case, a meaningful average electron density is not obtained
without an independent knowledge of the distribution function, since the
phase shift is not linear with density, and the method becomes less useful
for the quantitative measurement of even average densities. If, for
example, we assume a constant electron density (that is, a rectangular
profile which, incidentally, is somewhat contradictory to the adiabatic
assumption), the integration is trivial, and we obtain a parabolic de-
pendence of density on phase shift

~=2(~ ¡Jcp) _ (~¡Jcp)2. (4.2.10)
no L 21T L 21T

Figure 4.3 is a universal graph of this relation,
Since the phase shift introduced by the plasma sample is, in general, a

nonlinear function of electron density, we obtain information on the
distribution of density (profile) by making simultaneous measurements at
different frequencies and/or with different polarizations with respect to a
magnetic field.

We can expand the integrand in (4.2,2) (assuming no magnetic field),

(4.2,15)

rL f ( (w )2)Y.'\ 21T¡JCP=Jo '\1- 1-: fTdx

rL (1 pn(x) 1 p2n2(X) 1 p3n3(X) 5 p4n4(X) ) w=Jo ï~+g~+16~+128~+'" ëdx,
(4.2,11)

where p=e2/"om, Note that the series does not converge rapidly, As an
example, consider two measurement frequencies

Wi=W

w2=2w,
for which1 f 12f i 3f
¡JCPi =ï!w n(x) dX+g :w3 n2(x) dx+ 16 !WS n3(x) dx+. ..,1 f 12f 1 f
¡JCP2=4 :w n(x) dx+ 64 :w3 n2(x) dx+ 512 c~s n3(x) dx+ . . ..

(4,2,12)
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rejlectedfrom the anomalous region with little dissipation (Denisov, 1958;
Stix, 1960), The external behavior is thus very similar to that of a

sharply bounded, high-density (n :; nc) plasma. In the case of a resonance,
however, the wave is largely absorbed, This distinction is of considerable
significance for both reflection-type microwave probing measurements
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FIG, 4,4 Reflection and transmission at sharp boundaries. (a) Vacuum-plasma

interface. (h) Plasma slab.
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and thermal radiation measurements, as well as for the nondiagnostic

question of plasma heating by electromagnetic radiation.
It wil be noted from the graphs of Chapter i that, in general, for a

given magnetic field, cutoff occurs at a lower density than the resonance,
Thus, characteristically, waves entering the plasma from outside are
reflected before reaching the resonance. The resonance may, in some
cases, be made accessible by allowing the wave to enter the plasma in a

region of high magnetic field (generally such that the cyclotron frequency
Wb:; w) which then decreases spatially within the plasma, so that the

resonance is approached from the high-field side, In Section 6.5.4 an
experiment using this technique is described, A situation of this sort has
been exploited in the "magnetic beach" geometry for the dissipation of ion-
cyclotron waves (Stix, 1958), If the regions of cutoff and resonance are
close together within the plasma, relative to a wavelength, it may be
possible for a sort of "tunnel effect" to occur in which the resonance
region extracts energy from the evanescent wave passing through the
cutoff, Tunneling or "bridging" may also take place by mode conversion

processes (Ratcliffe, 1959, Chapter 17), Stix (1960, 1962) has shown
that at a resonance high-temperature and ion-mass effects may reduce

absorption, increase reflection, and excite other plasma modes,

4.3 The slab with sharp boundaries

We again consider the interaction of a plane wave with a slab plasma,
However, in contrast with the adiabatic case of Section 4.2, we now
assume a homogeneous plasma with sharp boundaries, that is, the transi-
tion between vacuum and uniform plasma occurs over a distance much
less than a wavelength. There exists a well-defined reflection coeffcient at
each interface, and reflection and transmission coeffcients are determined
by boundary conditions on the wave fields at the interfaces,

Consider first the single interface of Fig, 4.4a, Waves traveling to the
right are represented by the phase factor exp(jwt-yx), and waves to the
left, by exp(jwt + yx) where y = a + jß = (jWlC)K'I is the complex propagation
constant. In the case of a plasma, the complex dielectric constant re,
and hence y, are known functions of electron density, collision frequency,
magnetic field, etc., as developed in Chapter 1, In accordance with
Maxwell's equations, the magnitudes of the electric and magnetic wave
fields are related by the wave impedance

E ( )Y:
ií = ii = :eoo ' (4.3.1)

with respective polarizations as shown in the figure. The wave impedance
ií is, in general, complex on account of re, Since the waves are transverse
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and there are no surface currents at the interface, the boundary conditions
require that E and H are continuous across the interface. Therefore the
wave amplitudes, in the notation of Fig, 4.4a, are related by

E¡+Er=Ei

E¡-Er=j(YoEi, (4,3.2)

It follows that the (complex) amplitude reflection and transmission

coeffcients are, respectively,

~ Er 1-j(Yo rí-'Iop-------'
- EI-1 +j(Yo - rí+'Io

_ Ei 2 2rí'r=-=--=_; (4.3,3)
E¡ 1 + KYo 'I + '10

where '10 = 377 ohms.is the wave impedance of free space, Note the
significance of the wave impedance that there is no reflection when the
impedances of the two media are equa1.2

The single-interface power reflection and transmission coeffcients are,
respectively,

_ (1-¡i)2+X2
r= Ip12= (1 + ¡i)2+X2'

1 I ~12 4¡it= -r=¡i T =(1 )2. 2
+¡i +X

where ¡i-jx=j(Yo= -fycfw, and the voltage standing-wave ratio is3

(4,3.4)

VSWR= 1 + Ipl_1 +r%l-Ipl-l-r%' (4,3.5)

2 In a more general (nonplasma) case with the relative permeabilty Km different from

unity and perhaps also complex, then r¡ = (KmP.o/K£o)~~' Reflection at the interface
between two media is suppressed so long as the ratio Km/K is the same for both media,
even though K and Km themselves change by large factors. This effect is exploited in
the design of microwave-absorbing wan coatings in which both K and Km have

imaginary (lossy) components (see Chapter 10).
3 When the imaginary component of K is negligible, the VSWR=I/St=I/p.=r¡/r¡o.
The positive sense of polarization of the reflected wave has been chosen arbitrarily
for the case K.c 1. If K:; I, the sense of E, is reversed and VSWR = K~~ = P. = r¡o/r¡.

We note, in passing, a convenient procedure for calculating the maximum trans-
mission loss due to reflection, From standard transmission-line theory the maximum
VSWR from two discontinuities is the product of the respective VSWR's (and the
minimum, the quotient). Thus, the maximum transmission loss due to reflection
from a slab can be obtained from standard charts assuming a single discontinuity
with

~1/P.2 p..c1
VSWR= p.2 p.:;1.

This procedure applies only if there is no dissipative loss between discontinuities.
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The situation of practical interest is that of the slab of Fig, 4.4b, By
setting up boundary conditions similar to (4.3,2) at the two interfaces
(or, alternatively, summing the infinite series of 

internally reflected waves),

one finds (Stratton, 1941) the amplitude reflection and transmission

coeffcients

1':

r=Er =p(1-exp( -2yd)),E¡ 1 - p2 exp( - 2yd)

T=Ei (1-p2)exp(-(y-jwfc)d),E¡ 1 - p2 exp( - 2yd)

(4,3.6)

(4,3.7)

and the power reflection, transmission, and absorption coeffcients are

rUI -exp( -2ad)F+4 exp( -2ad) sin2(ßd))
(l-r exp( -2ad))2+4r exp( -2ad) sin2(ßd-if)'

R (4,3,8)

T= ((I-r)2+4r 

siii2if) exp(-2ad) ,

(1-r exp( -2ad))2+4r exp( -2ad) sin2(ßd-if)

A=1-R-T,

where if is the phase angle of p= Ipi exp(jif) and

2x-,
(1 + ¡i)2+ x2

(4.3,9)

(4.3,10)

rYo sinif

1-¡i2_X2
(1 + ¡i)2 + x2'

It is to be noted that the coeffcients (4.3,8) to (4.3.10) are oscilatory

functions of slab thickness d (or of frequency w) as a result of interference
of internally reflected waves. Likewise, the phase of the transmitted
wave, which may be calculated from (4.3,7), is perturbed by interference,
As a simplification, we may assume that the reflected waves are incoherent,
thereby suppressing interference effects, and obtain 4

rYo cosif
(4,3,11)

4 Interference is suppressed by considering only power relations. The fraction r of
the incident wave is reflected at the first surface of the slab, the fraction a(l- r)
(where a=exp(-2ad) is the one-way power loss through the slab) is transmitted to
the second surface. Of this latter the fraction a(l- r)2 escapes while the fraction
ar(l- r) is reflected back toward the first surface. Iteration of this analysis yields

the series

R=r+a2,(1-,)2(1 +a2,2+a4,4+.. ,)
T=a(l-,)2(1 +a2,2+a4,4+.. ,).

Summation of these infinite series leads to (4.3.12) and (4,3.13).
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R ,(1 +(1-2,) exp( -4ad)l,1-,2 exp( -4ad)

T (1-,)2 exp( -2ad)1-,2 exp( -4ad) ,

A (l-,)(1-exp( -2ad)l,
1-, exp( -2ad)

(4,3,12)

(4.3,13)

(4,3,14)

These latter relations are often useful for estimating average effects and
become more realistic as d)) À, One may also be concerned with the case
of oblique incidence, in which case the wave polarization becomes

important (Graf and Bachynski, 1961).

Numerical calculations of (4,3,8) to (4.3,10) may readily be made as a
function of plasma properties (French, Cloutier, and Bachynski, 1961),

Figure 4.5 ilustrates the case for a plasma four wavelengths thick, Figure
4,6 shows, for the same case, the phase error of the transmitted wave
relative to the geometrical optics phase.

This sharp-boundary, homogeneous-plasma analysis can be extended to
cylindrical geometry by expanding the incident and diffracted waves in
terms of the normal-mode waves of the dielectric cylinder (Ds.wson and
Oberman, 1959; llatzman and Ozaki, 1960), For electric-vector polariza-
tion perpendicular to a small plasma column, scattering resonances
related to the plasma properties and geometry are found (Crawford et aL.,
1963), The finite size also modifies the frequency of longitudinal plasma
oscilations (Branch and Mihan, 1955). Unless simplifying approxima-

tions can be made, numerical calculations for given experimental situations
are usually diffcult to carry out, even with electronic computers, since

extensive summations over Bessel functions must be performed for each
point, Calculation is especially diffcult when the plasma diameter is
not much larger than the wavelength, and when the receiving antenna is at
a finite distance and subtends a nonzero angle at the plasma axis. The
interaction of nearby antennas with sharp plasma boundaries, with
resulting modification of reflection and transmission characteristics, has
been studied in connection with precision interferometry (Kerns and
Dayhoff, 1961) and with antenna matching (Redheffer, 1949),

4.4 Inhomogeneous plasmas

If the propagation properties of a plasma vary suffciently slowly over a

wavelength, the adiabatic analysis of Section 4.2 is applicable, However,
this analysis explicitly excludes reflections and interference effects. At
the other extreme, the case of a sharply bounded, homogeneous plasma
may be solved by boundary-value methods, as outlined in Section 4,3.
The treatment of the intermediate case between these two limits, especially
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o

in the presence of a static magnetic field, is much more complicated since
propagation in an inhomogeneous medium must be considered explicitly
in terms of Maxwell's equations, Tn general, a-c spacecharge exists in
regions of electron density gradients (Buchsbaum and Brown, 1957).
For cold plasmas and for wavelengths long compared to interparticle
distances and gyration radii, the local electromagnetic properties of the
plasma medium may usually be represented by a space-dependent, complex
dielectric constant K(r), which is a tensor quantity on account of the
anisotropy introduced by a static magnetic field (Drummond, Gerwin,
and Springer, 1961). Hence, for fields varying as expjwt, Maxwell's
equations become VxE= -jw¡'oH (4.4,1)

VxH=jWtoK.E (4.4,2)
V'(K.E)=O (4.4,3)V.H=O, (4.4.4)

Taking the curl of (4.4,1) and using (4.4.2), we obtain the wave equation
for E in the form

w2VxVxE='2 K'E.
c

(4.4.5)

The vector identity \ x \ x E = \ (\ . E) - V2E allows us to rewrite the
equation for E as

w2
PE+- K.E=V(V.E)c2 ' (4.4,6)

,;.
.:1£
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wherein general the term on the right-hand side cross-couples the three
components of E. Similarly, multiplying (4.4.2) by K -1, then taking its
curl and using (4.4,1), we obtain the corresponding wave equation for H
in the form

w2
VX(K-1.(VxH))-'2 H=O,

c
(4.4,7)

Thus, either anisotropy or inhomogeneity causes the wave equations for

E and H to be different and to contain terms which cross-couple the
scalar field components, In the nonhomogeneous case, the difference
arises physically from the fact that the wave impedance (that is, the ratio
of E to H) changes even when the Poynting vector (the product of E and H)
is approximately constant,

From (4.4,6) and (4.4,7) one can deduce the nature of initially plane
waves for various assumed forms of dielectric constant, directions of
inhomogeneity, and directions and polarizations of the waves (Bachynski,
1960), The results are summarized in Table 4,1. For instance, even in
the absence of a magnetic field, a wave propagating perpendicular to the
density gradient is no longer transverse electromagnetic (TEM).

4.4.1 Isotropic inhomogeneous plasmas. In the special case with no

magnetostatic field and consequently an isotropic, scalar dielectric constant
K, (4.4.6) becomes

4

V2E+ ;22 KE+ V 
((VKtE) 

=0,

If, furthermore, we assume that the wave is initially plane and transverse
and K changes only in the direction of propagation, then (vK).E=O and
the wave equation reduces to

d2E w2
d 2 +'2 K(X) E=O,x c

Indeed, the adiabatic approximation of Section 4,2 is simply a first-order
solution of (4.4,9), For the same special case, (4.4.7) reduces to

d2H w2 _ 1 dK dH
-d 2 +'2K(x)H=_( )-d-d 'x c KX X x

the magnitudes of E and H being related by (4.4.1) as
j dEH=--'

W¡'o dx

If an effective propagation constant jíx) is defined such that (Osterberg,
1958)

(4.4,8)

(4.4.9)

(4.4,10)

(4.4.11)

I dE
jí(x) = --E dx'

(4.4.12)
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then (4.4.9) requires that ji satisfy the Riccati differential equation5

dji w2
- dx +ji2+ c2 K(X)=O.

(4.4.13)

& In a homogeneous medium (4.4.13) gives the familar result y= :ljl(i;wlc, The
condition for the validity of the adiabatic approximation is then seen to be

Idyl w 1 dl( w2dx ~ 2c i(y' dx ""'e 1(,
or

! dl( ",,2w I(i; ~ 4".I( dx c À
where ,\ is the local wavelength in the medium, That is, the relative change in I(
over a wavelength must be small compared to 4".. The same condition is obtained
from (4.4.17),

TABLE 4.1 EFFECT OF INHOMOGENEITY AND ANISOTROPY ON

PROPAGATION OF PLANE ELECTROMAGNETIC WAVES (Bachynski, 1960)

Type of medium

Uniform isotropic
K-1=e

Uniform anisotropic

( ej. ex 0)

K-1= -ex ej. 0
o 0 eii

Inhomogeneous isotropic

K-1=e(r)

Along initialy
Along initial E
Along initial H

Inhomogeneous anisotropic Along initialy
Along initial E
Along initial H

( ej.(r) ex(r) 0 )
K-1= -ex(r) e.L(r) 0

o 0 ei¡(r)

. O=ordinary, X=extraordinary (propagation across field); L, R=left/right-hand
(propagation along field); TE M = transverse electromagnetic; TE = transverse

electric; TM = transverse magnetic; NT = nontransverse; the propagation coeffcient
y is in direction of wave normaL.
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If (4.4.13) can be solved for y(x), the wave propagation is given by

E(x)= E(O) exp( - I' y(x) dX)-

In general, (4.4.13) yields two solutions for y, corresponding physically to
waves traveling in both directions. In fact, where K is pure real, one

solution is the complex conjugate of the other, Reflection and trans-
mission coeffcients are obtained by matching boundary conditions in a
manner analogous to the uniform slab problem of Section 4.3. For the

simple model of a linear variation in electron density, for instance, (4.4.9)

(4.4.14)

T i
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FIG. 4.7 Amplitude reflection and transmission coeffcients for a linear-ramp
variation of electron density n, as a function of ramp length L for real dielectric
constants of the form 1(= 1-"I"e; ,\ is free-space wavelength. (Reproduced from
Albini and Jahn, 1961, by courtesy of the Jol/rnal of Applied Physics.)
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may be solved directly in terms of Airy functions and computations made
for linear ramp or trapesoidal profiles (Albini and Jahn, 1961; Wort, 1962),
Figure 4.7 ilustrates the dependence of reflection coeffcient on ramp
length and dielectric constant. Numerical calculations for other simple
profiles have been made by Taylor (1961), Klein et a1. (1961), and Hain
and Tutter (1962), Interference effects, arising between reflections from
the two sides of an inhomogeneous slab appear to be much more pro-
nounced in the amplitude and phase of the reflected wave than for the
transmitted wave, A somewhat similar problem has been considered in
connection with tapered waveguides (Johnson, 1959).

4.4.2 Anisotropic inhomogeneous plasmas. In more general cases it is
usually easier to deal with the magnetic vector, since it is always solenoidaL.
Once H is found from (4,4.7), E may be obtained from (4.4,2). Consider
as a somewhat more general special case an inverse dielectric tensor in the
form

( K~1 K;;1 0 J

K"-1- _ -1 -1 0- Kx Kj, ,
o 0 Kii 1

which is appropriate to a cold plasma in a magnetic field directed in the
z direction. Further assume that the elements of K -1 are functions of x

only and that propagation is in the x direction with H-polarization

alternatively in the y or z direction (ordinary or extraordinary waves,
respectively), Expansion of (4.4.7) indicates that the magnetic field
remains transverse for both cases, whereas (4.4,6) indicates that the electric
field is transverse only for the ordinary wave. Assumption of a space-
dependent, effective propagation constant analogous to (4.4.12)

(4.4.15)

jíx)= _2- dH,H dx

leads to the differential equation for jí(x) analogous to (4.4.13)d w2
__ (¡(-ljí)+¡(-ljí2+_=Odx . c2'

(4.4.16)

(4.4,17)

where ¡(-I=KIl-1(X) or Kl. -l(x) for the ordinary and extraordinary wave,
respectively, Numerical calculations for this anisotropic case have been
made by Hain and Tutter (1962),

The problem of an inhomogeneous cylindrical plasma is again more
complex, since the wave equation must be dealt with in cylindrical co-
ordinates, With a plane wave incident upon a cylindrical plasma, it is
possible in principle to calculate the phase and amplitude of the scattered

":.

:t"
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wave as a function of scattering angle (King and Wu, 1959). Since these
quantities are readily measurable as a function of angle, the inverse

problem of deducing the profile from scattering data provides an interest-
ing technique for measuring plasma profiles (Shmoys, 1961; Kerker and
Matijevic, 1961),

4.5 The' geometrical optics of a uniform cylidrical plasma column

A very approximate but useful model of common laboratory plasmas
assumes a homogeneous cylindrical plasma several free-space wavelengths
(of the probing microwave) in diameter, and yet neglects reflections at the
boundary-the geometrical optics limit, The basic parameters of this
geometry are defined in Fig, 4,8. The problem is assumed two-dimen-
sional, the elements being of infinite extent normal to the paper, If the
plasma is distant by at least a wavelength from the antenna, induction
effects can be neglected and the situation treated as a radiation problem,
If

Alb~1

Dlb~l,

geometrical optics is a valid approximation, and we can talk in terms of
rays which, except for refraction, travel in straight lines.

4.5.1 Transmission loss by refraction. We now consider the effect of
refraction (Heald, i 959a; Wort, 1963). Since the index of refraction of
the plasma (no magnetic field, or parallel polarization) is

¡. = (1- nlnc)'h .. 1

the plasma column constitutes a divergent cylindrical lens, With the
help of Fig. 4,9 we compute the refraction of rays in the geometrical-
optics limit for a homogeneous plasma with sharp boundaries, The exit

Transmitting
antenna

Cylindrical
plasma

Receiving
antenna

~ 8 ~~--R I' R-l~
FIG,4.8 Microwave beam geometry for a cylindrical plasma.
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FIG. 4.9 Cylindrical refraction.

angle 8e is given in terms of 
the incident angle 81 and the entrance ordinate

P 12 by the following simultaneous equations:

8e=8¡+2(82-81)

sin(81- 81)= PD

sin81 =¡. sin82 (4.5.1)

If now the exit ray is to strike the edge of the receiving aperture, at

cartesian coordinates (R, A12) with respect to the center of the cylinder

cross section, we have the following condition on 81 and PI2 for the most
divergent ray accepted by the receiving aperture,

A - Dsin(81+282- 81)
tan8"=2R_ D cos(81+282- 81f (4,5,2)

In many cases of practical interest it is reasonable to make small angle
approximations. We obtain from (4,5.1)

P81-81=-D
81 = ¡.82,

and thus

8e=2(~- i) ~ + (2(~- i) + 1) 81, (4.5.3)

Setting m=(I/¡.)- I, from (4.5.2)

(2R-D)(2m ~ +(2m+ 1)81) =A- D((2m+ I) ~ + 
2(ni + 1)81). (4,5.4)

),
,¡-
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i

I¡Unrefracted ray
". Refracted ray

~ __ / L_----
."' -----

L-lR ~
FIG. 4.10 Effect of refraction in geometrical optics approximation.

Solving for PID, we have

P A-(2(2m+l)R+D)81
D= 4mR+D .

For ¡.~1 the largest angle involved is (81+282-81), and the small angle
approximation is self-consistent for

(4.5.5)

or

P
(2m + 1) D+2(m+l)81~d

P 1-2(m+ 1)81
D~-( 2m+ 1 .

(4,5,6)

In the geometrical optics limit, with a point source at -(L+R), we
have from Fig. 4.10

sin81
P

2(L+ R) - D cos(81 - 81)

P
81 2(L+R)-D' (4.5,8)

(4.5,7)

or for small angles

Eliminating 8¡ in (4,5,5) and rearranging, we have finally

P _ A((L+R)- D12) .
D- 4mR(L+R)+D(L+2R)

We recall that PI2 is the largest entrance ordinate of rays that pass into the
receiving aperture, Therefore, when pi D~-( 1 the cylinder is equivalent to

(4.5.9)
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a slab of thickness D. With the above evaluation of 81 the small angle

approximations wil be self-consistent if from (4,5.6)

P 2(L+R)-D
D.c~2(2m+ l)(L+R)+ D

A 4mR(L + R) + D(L + 2R).c.c (2m + l)(L+ R) + Dj2 .

(4.5.10)

or using (4.5.9)

(4.5.11)

Neglecting dissipation in the plasma, we obtain a reduction in amplitude
at the receiving aperture because of the loss of highly refracted rays,
This (power) transmission ratio is

T= P D(L+2R)P(¡.= I) 4mR(L+R)+ D(L+2R) (4,5.12)

15
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FIG. 4.11 Loss of transmitted amplitude from refraction 4R(L + R)/ D(L + 2R) = 3.6,
dissipation vD/wÀ=O.l, and reflection.
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where we recall that
1m=--l
¡.

l-_i",l n
(l-nlnc)Yz "'2 ne + ' . ,

Figure 4.11 shows this transmission loss as a function of electron density
for the particular case of

4R(L+R~ =3.6.

4.5.2 Other sources of loss. For comparison, we compute the dissipative

loss in the plasma due to collsions. From (1.3.30), for n": ne and low
dissipation (that is, v2.c.cwp2..w2), this transmission loss is given in decibels
by njne vD

T(dB) = -8.686 aD= -1T(8.686) 'l-nlneì'h 21TC' (4.5.13)

for rays passing near the center of the plasma. Figure 4,11 shows this
relation for the numerical case

vD v D
21TC =~ À =0.1.

For the numerical cases chosen, the refraction loss dominates except very
close to the critical density.

Finally, we consider the question of 
interference effects due to reflections

at the sharp 'plasma-vacuum interfaces, In the usual case of PjD.cd
the only rays received are those which pass near the center of the plasma,
and we can regard the plasma as a slab of thickness D, For the case of

lossless slabs, the transmission ratio (4,3.9) becomes

T 1
1 + C ~:2) 2 sin2e1T~D)

(4,5.14)

which varies between

( 2¡. )21 + ¡.2 .. T.. 1

as the relative phasing of the reflections changes, This maximum
transmission loss is also shown in Fig, 4,1 1 .

4.6 The antenna problem

The observed interaction of an electromagnetic wave with a plasma of
finite size necessarily implies a "beamed" wave of finite extent and thus
depends upon the antenna system used to radiate and receive the wave
(Beard et aL., i 962). The plane-wave model, which has been tacitly
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FIG, 4.12 Geometry of the physical optics of (a) an aperture, and (b) a microwave
horn antenna.

assumed in the preceding discussion, is a mathematical idealization which
oversimplifies the practical situation, especially when the wavelength is
not much smaller than the plasma sample, Therefore, it is useful to
review some of the basic principles of diffraction,

4.6.1 Fresnel zones. Consider a circular aperture, of diameter A, in an
opaque screen iluminated with waves from a point S at a distance L to
the left, as in Fig, 4,I2a, We wish to investigate the nature of the radia-
tion field in the vicinity of an observation point P on the axis a distance R
to the right. In accordance with elementary Huygens-Kirchhoff-Fresnel

diffraction theory, we may divide up the wave front in the aperture into
Fresnel halfperiod zones, such that the radiation passing from S to P
travels an additional half wavelength for each zone (Andrews, 1960),
Specifically, the nth zone is a circular strip, the radius r n of the outer edge
of which is defined such that

,\
(U+rn2)y. +(R2 +rn2)Y. =L+ R+n i' (4.6.1)
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Setting rn=Al2 and assuming Ac(c(L and R, (4,6,1) may be expanded
binomially to obtain

n= A2 (.!+.!).4,\ L R (4.6.2)

If the aperture is uniformly iluminated, the contributions of adjacent
zones are out of phase and of approximately equal amplitude and,

thus, tend to canceL. Insight into the intensity distribution at various
observation points (not necessarily on the axis) may be obtained by
investigating the number of zones and the fractional area of each zone
exposed by the aperture, For instance (Fig, 4.13), the intensity at P
on the axis is a maximum for an aperture exposing i, 3, 5, . ,. zones,
and a minimum for 2, 4, 6" . . zones. The intensity at a point off the
axis is small if roughly equal areas of odd and even numbered zones are
exposed,

To a first approximation the radiation pattern of a horn antenna, of
diameter A as in Fig, 4,12b, may be described by this analysis (Silver,
1949), We are here interested in only a qualitative description and,
therefore, wil not be concerned with the modifications req\lired by a
rectangular rather than circular aperture, by the polarization of an electro-
magnetic (transverse) wave, and by nonuniformity of ilumination of the
horn aperture. However, in passing, it may be noted that for the
rectangular aperture with waveguide feed the diffraction field depends
upon two factors each of which depends, in turn, on only one of the
aperture dimensions-that is, the two dimensions are uncoupled (Schel-

kunoffand Friis, 1952, Chapter 16), We take A to represent the dimension

controllng the radiation pattern of interest (for example, in the plane
perpendicular to the axis of a cylindrical plasma as in Fig. 4,10), and

'I

:¡

:;,

(a) (b) (c)

FIG.4.13 Fresnel zones in a circular aperture; (0) on axis, (b) slightly off 

axis, and

(c) far off axis (enlarged scale). (See also Fig. 9.26,)
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ignore the other dimension, Furthermore, we shall assume L~~ R so that

L drops out of the analysis and (4,6,2) becomes 6

n=A2/4ÀR. (4.6.3)

Typ.es of antennas other than horns may also be described in similar
terms by suitably choosing an effective aperture dimension A,

If A, R, and À are such that the number n of exposed Fresnel zones is in
the range of one to ten, then strong interference fluctuations are to be
a,Conversely, it may be noted that the criterion for "optimum" horn design-that is,

the choice of A to maximize the gain for a fixed length L-is effectively n ~ 1 for
R~~L (Schelkunoff and Friis, 1952).

o

FIG. 4.14 H-plane intensity pattern in the field of a circular aperture, three wave-
lengths in diameter. (Reproduced from Andrews, 1947, by courtesy of The Physical
Review.)
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expected in the spatial vicinity of the point p, For low-order Fresnel
interference, amplitude variations are very large, the field pattern is
"choppy" as indicated in Fig. 4. i 4, and phase anomalies occur (Andrews,
1947, 1950; Linfoot and Wolf, 1956), A further example is shown in
Fig. 4,15 (Farnell, 1958),
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If n is very large, exclusion of induction fields requires R ~ À and

therefore A ~ 2nY. b). À, and the intensity distribution near P is essentially

that of geometrical optics; that is, uniform intensity fallng sharply to zero
in the geometrical shadow of the aperture. If a lens of focal 

length R is

inserted at the aperture, a Fraunhofer diffraction pattern is obtained in the
plane containing P, as in the familar problem of the astronomical

telescope,
If, on the other hand, n is much less than unity, a Fraunhofer diffraction

pattern is obtained at P even without a lens. This is the familar far-field
case of conventional microwave antenna theory, To the extent that

n ~A2/4ÀRo(d,
we have

R).). A2 /4À,

This is equivalent to the well-known rule for the far (Fraunhofer) field of
an antenna, which is usually written 7R~A2/À (4.6.4)
and signifies that the maximum phase differential between "rays" is less
than Àj8, or that the aperture is less than one-fourth of the first Fresnel
half-period zone (Montgomery, 1947), The total angular width of the
central maximum of the Fraunhofer diffraction pattern is 2À/A. There-
fore, the spatial width of the central maximum fallng on a plane in the
far field is

(2À/A)R~2A.

Thus, if A).).À the intensity distribution in the vicinity of P is quite smooth
over distances of the order of a wavelength, as in the high n case but in

contrast to the 1 ~ n ~ 10 case. The behavior of the field can be expected
to be qualitatively like the far field, up to a range corresponding to the
first Fresnel half-period zone R=A2/4À (Hu, 1961),

4.6.2 Collimation. It is an interesting property of microwave optics that
one can satisfy the Fraunhofer diffraction criterion R~A2/À without the
use of collmating lenses as normally required in the optical region. That
is, the "far field" of a radiation aperture, or an obstacle, is a much closer
distance, in wavelengths, than for similar apertures in the optical case.
Therefore, in many situations, far-field theory can be used to describe the
microwave field, Meanwhile, the use of lenses becomes less powerful
since the focal length F of the lens must beF~A2/À (4.6.5)
7 Some antenna engineers use the criterion R?:2A2/)., corresponding to ),/16 or
one-eighth zone. Amplitude errors due to interference are then about 2% as
opposed to 5% for the criterion given above.
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if the focusing effect of the lens is to influence the diffraction pattern

appreciably. The so-called f number of the lens is then

f=F/A~A/À, (4.6.6)

When the geometrical optics condition A/b).l no longer holds, lens
designs of smallfnumber are called for; these show strong aberration and
are otherwise impracticaL. Stated differently, the width of the (Fraun-
hofer) diffraction pattern at the focus of a lens is

(2ÀjA)F=2fÀ (4,6.7)
with f~ 1 for practical lenses,

The far-field region can be effectively extended somewhat closer to the
antenna aperture by using a lens to partially overcome the diffraction
spreading (Sherman, 1962). The angular half-width of the central
maximum of the Fraunhofer diffraction pattern is À/A. In geometrical
optics a ray leaving the edge of an aperture of width A at this angle
appears to originate at a point located a distance A2/2À on the source side
of the aperture, and therefore the insertion of a lens of focal length

F=A2/2À wil render this extreme ray parallel to the axis, Thefnumber
of such a lens is

f=A/U, (4,6,8)

agreeing closely with the upper limit of (4,6,6),
Table 4,2 summarizes the characteristics of the radiation field' for

various regimes of the parameters, The best collmation ( .. À) is obtained

TABLE 4,2 FIELD PATTRNS AND COLLIMATION OF ANTENNAS

Number of zones
in aperture

! i
. I

Small aperture
A/Ìi~ 1

Large aperture
A/b~ 1

n~~ 10

1..11;:10

n.. 1

Induction
field region

Normal geometrical ray optics
(collmation ~ A without
lens; ~ À with lens)

Fresnel interference, "choppy"
intensity distribution
(collimation ~ A)

Fraunhofer diffraction radiation pattern (collmation
2ÀRjA?: A)

in the A/ì\-I, n..l case (antenna far field) and the A/b;;l, n;;;;l0

case with lens (geometrical optics). The latter, however, is a strongly
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converging wave passing through a focus, It appears best to design

the experiment so as to avoid the low-order region (i ;Sn;S 10). If the
number of Fresnel zones is either very large or small throughout the
space occupied by plasma and receiving antenna, then the ilumination
wil be fairly uniform and the phase fronts well-behaved,

4.6.3 Optimization of antennas. Let us assume that we are given the

diameter D of a cylindrical plasma column and the wavelength ,\ with
which we are to probe it, We further assume that '\, determined by the
electron density range to be measured and perhaps the availability of
short-wavelength instrumentation, is small compared to D but by no
means negligible. Since we wish to obtain a reasonable average of the
electron density independent of refraction (and diffraction) by the plasma,
we wish to achieve maximum collmation of the microwave beam so that
it effectively passes along a diameter, We have seen from a geometrical
optics point of view that when ¡i": 1 the divergent lens action improves the
effective collmation by refracting nondiametric rays out of the receiving
aperture, However, because of the danger of reflection from such
extraneous obstacles as the vacuum system walls, and because of the desire
to conserve feeble milimeter-wave power, we wish to maximize the power
in received diametric rays and minimize it in nonreceived and/or non-
diametric rays, That is, we wish to minimize the insertion loss between

antennas while ensuring that most of the radiation passes close to the axis
of the plasma (Heald, 1959a).

The most clear-cut situation is when D~~A~~'\, which conforms closely
to infinite-slab, geometrical-optics conditions. However, our interest is
in the case where perhaps I;S DI,\;S 10, If A:; D, appreciable energy
passes around the plasma, reducing sensitivity and severely complicating
interpretation, With D ~ A ~'\, in order to avoid induction field effects
and Fresnel-zone interference effects, we must have the plasma located in
the far (Fraunhofer) field of the antennas, R~A2/,\,

It is a well-known rule of antenna engineering that for a pair of antennas
to be located in the far-field region, by the usual A2/,\ criterion, the
minimum insertion loss is of the order of 16dB (Montgomery, 1947),
Since only about two per cent of the radiated power is received, the
probability of interference from spurious reflected signals is high, We
are, therefore, interested in pushing as close to the near field (Fresnel zone
num ber n '" i) as possible without encountering severe amplitude and phase
disturbances from interference, This leads to the alternative of small
(nondirective) antennas relatively close to the plasma or large (directive)
antennas farther back.
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The concentration of rf energy produced in the field of a horn antenna
depends upon two factors: the width of the wavepacket launched, and the
angle of spread of the wave, Empirical plots of intensity contours in the
field of milimeter horn antennas indicate that one half of the energy is
confined within a beam width

W= ((a;) 2 + (b~R) 2) % (4,6,9)
where a and b are correction factors depending on geometry and aperture
ilumination and departing only slightly from unity, For a given ,\ and
R, this is minimized when

:1'

(2b )%
A = -'\Ra

(4,6,10)

giving
a A2R=--2b ,\

Wm1n=(ab'\R)%. (4,6.11)
This condition corresponds to an aperture of about one half a Fresnel

half-period zone at R, The insertion loss between two such antennas

spaced 2R apart is about 8dB, depending upon the other dimension of 
the

antenna aperture, Sometimes mechanical constraints of the apparatus
wil prescribe R, in which case A is determined by (4,6.10), If both A
and R are at the experimenter's disposal, it is necessary to consider the
role of the diameter D of the plasma column, The relative beam size
WI D varies as Rl' I D, whereas the relative spreading of the field over the
plasma

D (8 W)
W 8R Wmln

varies as DIR, Since we wish W~~D~~R, we arbitrarily take
D=(WminR)'I=(abì.R3)'/4, (4,6,12)

Recapitulating, given D and ì. and assuming a=b= i, we choose

(D)Y:
R= - D

,\

A=(2ìR)'2=ÝI (~r D, (4,6.13)
This heuristic argument is founded on the vague assumption that there is
some virtue in minimizing the beam width at the plasma by choice of A
and then compromising in the choice of R such that

D R
Wmin - D'

The effect is to prescribe a situation in which the plasma is located slightly
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inside the conventional far-field boundary, We have seen, however, that
under these conditions diffraction anomalies should not be very severe,
Note that when Dlb~ 1, R-c-cD2lÀ and, therefore, the plasma approximates
an infinite slab as far as diffraction is concerned, By reciprocity and
symmetry arguments, we conclude that transmitting and receiving
antennas should be identicaL.

The preceding discussion has been based on the assumption of simple

horn antennas without lenses, It has also assumed a "long" horn
(L~A2lÀ) and L~2R, which may be impracticaL. Thus, two uses for
lenses emerge: (1) to permit a less-than-long horn, in accord with con-
ventional practice; and (2) to focus the beam or at least over~collmate to
compensate partially for diffraction, If a horn is "long," its far-field
(R)-A2lÀ) pattern cannot be appreciably narrowed by addition of a lens.
However, in the previous section we have discussed the use of a lens to
focus the energy at a distance R;SA2lÀ. The suggestion has been made to
use converging lenses focused at the plasma axis (Boyd, 1959), This is

chiefly based upon the geometrical-optics argument that all rays pass
diametrically through the plasma, thereby removing the refraction and
sampling diffculties of the "plane-wave" approach, If Alb~ 1 so that a
good focus can be obtained, and if this focus ( ~ À) is small relative to the
plasma, Dlb~ I-that is, a good geometrical optics situation-this
procedure has merits (Papoular and Wegrowe, 1961). However, in this
case, the relative rf field strength becomes very high in the vicinity of the
focus, so that nonlinearities in the rf properties of the plasma may be
troublesome, If, on the other hand, DlÀ~ 1, the so-called Gouy phase

anomalies in the vicinity of the focus (Fig, 4,15) could severely complicate
the interpretation (Linfoot and Wolf, 1956; Bekefi, 1957; and Farnell,
1958), In this case, it appears that if lenses are to be used they should be
focused at the opposite antenna or beyond (Christian and 'Goubau, 1961).
Further discussion of the practice of using lenses can be found in Sections
6.4 and 9,3.

Because of the perturbation that thick dielectric windows (glass, mica,
quartz, etc,) make on the field of a milimeter-wave antenna (Redheffer,
1949), it is often useful to locate the vacuum seal at a convenient point
back in the waveguide so that the antennas are wholly within the vacuum
system, Such window design follows standard practice as used in
microwave tube output windows and waveguide pressurizing windows;
examples are given in Section 9,6. Alternatively, care must be taken to

provide matching structures at the vacuum walls (Jahn, 1962),

4.6.4 Validity of the geometrical-optics, slab model. Since the geo-
metrical-optics, plane-slab model 

is particularly convenient to analyze,

'.~.ç\~;
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FIG, 4,16 Phase shift and attenuation as a function of cylinder diameter in paraffn
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it is of interest to investigate the validity of this model for the more
practical case of a cylindrical plasma, In addition, since the nearness of
the antennas, as well as of extraneous objects such as vacuum system walls,
severely complicates theoretical analysis, it is often most effective to

perform an analog experiment (Warder, Brodwin, and Cambel, 1962;

lams, 1950; and Lashinsky, 1963),

A plasma, with dielectric constant less than unity, can be simulated by
cutting holes in a large block of low-loss dielectric, in which a scaled

antenna system is imbedded. In one such experiment the phase shift and
insertion loss were measured for various size cylindrical holes cut in

w~ -- ,./ ", /
..' "" - . ; -b~è. I'

~-LR ,I' R--
FIG, 4,17 Propagation through a dielectric cylinder, small compared to effective
microwave beam.
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paraffn (K=2,25) (Rosen, 1959), This dielectric constant ratio corre-
sponds to a plasma of 0,56 critical density, The antenna system was
chosen for a plasma diameter of about four wavelengths in accordance

with the design criteria of Section 4,6,3, the prototype system having an
insertion loss of approximately 8dB in vacuum, Typical results are
shown in Fig, 4,16, For cylinder diameters greater than about three
wavelengths, the observed phase shift differs negligibly from what would
be expected for a plane slab, except for the loss of a full wavelength,

This latter effect can be explained as the result of interference between the
wave passing through the cylinder and the wave passing around 1t,
Using the notation of Fig, 4,17, we regard the wave entering the receiving
aperture as composed of two components: (0) the wave passing through
the cylinder of

amplitude (PlW)Yi

phase 27T(¡-1)DlA

(neglecting internal interference effects), where fL' 1 is the refractive index
of the cylinder (air) relative to the paraffn, and A is the wavelength in the
paraffn; and (b) the unperturbed wave passing around the cylinder of

amplitude (1 - DlW)%
phase O.

W is the effective beam width at the plasma,
L+R

W=L+2RA;

and from (4,5,9)
P A((L+R)-Dl2)
D'; 4(~-1)R(L+R)+D(L+2R)'

The resultant wave is then

(4,6,14)

(4,6,15)

(P)" ( D"W ,2 eXPU27T(¡-1)DlA)+ 1- W r exp(jO)= C exp(j LJif)(4.6.16)

where C and LJif are the amplitude and phase shift of the resultant wave,
We have

f P ( D) (P)~~( D)% ì.YzC=ì.W+ 1- W +2 W 1- w cos(27T(fL-1)DlA)J'
(4,6,17)

( P)Yi-1 W sin(27T(fL-l)DlA)LJif=tan P Yi D ~2'
(w) cos(27T(fL-l)DlA) + (1 - w)

(4,6,18)

2 3
Diameter vjÀ (in paraffn)

FIG, 4.18 Results of simple geometrical optics theory for the conditions of Fig.
4.16, exhibiting "loss" of 360°.
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FIG, 4.19 Phase shift as a function of dielectric constant of cylinder in paraffn-
analog experiment, simulating plasma of varying density. Cylinder diameter 4.6

wavelengths.
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The theoretical C and ¿tn, are plotted in Fig. 4.18 for parameters corre-
sponding to the experimental conditions of Fig, 4,16, In order to obtain

these relations for C and ¿tn" several small-angle approximations have been
made, diffraction was completely neglected, and interference effects
inside the cylinder were disregarded, In spite of the crudity of the

geometrical optics analysis, the numerical agreement is reasonably good,
This "lost-wavelength" effect could cause misleading results in a plasma

experiment in the uncommon situation in which the plasma is created
with a small diameter ( .. 2'\) which subsequently grows larger.8 More
commonly, the plasma is created with a relatively large diameter ()o 3'\)
and then grows denser (due to increased ionization) or smaller (due to
some form of magnetic compression). In these cases, the transition from
the vacuum (no plasma) phase-shift condition, as the plasma develops,
appears to be unambiguous, By inserting rods of various known
dielectric constants in a fixed diameter hole in the paraffn environment,
the data of Fig. 4,19 was obtained, simulating varying plasma densities

(Rosen, 1959), On the basis of this study, we conclude that the,slab
analysis is satisfactory for a cylindrical plasma diameter of at leas( three
wavelengths, provided the antenna system is chosen judiciously,
8 The expanding-diameter situation could occur during a plasma decompression
event or an expanding cylindrical shock.
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CHAPTER 5

Guided wave propagation

5.0 Introduction

The effects of finite plasma dimensions on wave propagation were
discussed in Chapter 4, The boundaries were found to cause reflections
and refraction of transmitted waves and, in some cases, to affect the
radiation patterns of antennas, In most cases, the boundaries led to
problems, rather than being beneficial to the propagation experiments:

In the present chapter, we discuss another class of 
bounded plasmas; in

this case, boundaries are essential to the wave propagation, Resonant
cavities and waveguides have metallic walls that carry currents and, thus,
set up propagation modes, The electromagnetic fields penetrate the
enclosed plasma, whose conductivity, in turn, affects the mode cut-off
frequency. Measurements of wave phase shift or resonant frequency and
loaded Q then can be related to the plasma properties.

Plasmas having vacuum or dielectric boundaries can support space-
charge-wave modes and, thus, can act as waveguides, Certain space-
charge-wave modes propagate along the plasma surface (surface waves),
while others are carried within the plasma (body waves), When a
magnetic field is present, the waves tend to be a combination of both types,

Electromagnetic waves and spacecharge waves may propagate simul-
taneously along the same bounded plasma. Under certain conditions, the
different wave types may couple to one another but, in general, the
coupling coeffcients are rather smalL.

5.1 Measurements on plasmas contained in resonant cavities
The resonance properties of a cavity containing a lossy dielectric can be
stated in terms of Q
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