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EXPERIMENT

Symbols and Commonly Used Constants

Symbols

KT
e

M

E = particle kinetic energy

CS = ion sound speed :M/

Eb = beam energy

, I. = electron, ion saturation current

I
es’ "is

K = Boltzmann's constant
M, m, = ionic mass
Tb = ion beam temperature cquivalent

Te’ Ti = electron, ion temperature

Vd = discharge potential

<
"

grid potential

<
"

£ floating potential

V_ = plasma space potential
s
KTe
a_ = electron thermal speced =-J———
e ; m
kTi
a, = ion thermal speed = \|—=

e = electronic charge

fb(v) = beam ion velocity distribution

fe(v), fi(v) = electron, ion velocity distribution functions
k = wavenumber

m, m= electronic mass

n, n, = electron density, ion density

n = beam density —_
KTe
vg = Bohm (Tonks-Langmuir) speed = e
vy = beam velocity —_

<
n

average magnitude of electron velocity (3 dim) =




<
"

group velocity

g
vp = phase velocity
z_ = axial plasma position
o VKT
- N e
AD’ ADe = electron Debyelength = Trme?

6 = ion/electron temperature ratio

"w = frequency

W, W o= electron plasma frequency

2

4Tne

w .. = M

pi
@ = normalized wave frequency =

ion plasma frequency =V/

w_.
pi
0. = charge exchange cross sections,

(velocity dependent)

Physical Constants (CGS)

Boltzmann's constant
Elementary charge
Electronic mass
Hydrogen atom mass

Speed of light in vacuum

i
T
e

_ 4mme?
m

e.g., O ~ 5 x 10 1'% cm?

Art - Ar

K = 1.3807 x 107 !® erg/°K
e = 4.8032 x 10" !? statcoulomb
m = 9.1095 x 10 %% gram

Mp = 1.6734 x 10" %" gram

c = 2.9979 x 10'? cm/sec

Temperature associated with 1 eV = 1.1605 x 10* °K

Atomic Masses for Typical Plasma Gases

Gas
He
Ne
Ar
Kr

Xe

Mass (AMU)
4.0026
19.9924
39.9624
83.9115

130.905




Chapter I. Plasma Production

A plasma source which possesses the desirable characteristics of
quiescence and uniformity has been developed at the UCLA Plasma Physics
Laboratory and is now being used in many parts of the world for basic
plasma research. Because this source is economical to build and simple
to operate, it is ideally suited to the undergraduate or graduate plasma
laboratory. All the experiments to be described in this text can be

performed in this one device.

1) The D.C. Discharge

Plasma can be produced by electron bombardment of a neutral gas in an
otherwise evacuated vesscl. In the D.C. discharge, a current is passed
through a set of filaments (tantalum or thoriated tungsten wire) to heat
them by joule heating. A significant number of electrons in the hot fila-
ment can have an energy greater than the work function and are emitted.
These electrons, called primary electrons, are accelerated by an external
D.C. electric field such that they have sufficient energy to ionize the
neutral gas. The minimum energy required to remove the first valence
electron from the neutral atom (the first ionization energy) is in thé
neighborhood of 20 eV for commonly used gases at room temperature. A dis-
charge potential above this energy must be applied between the filaments
(cathode) and the chamber wall (anode) to obtain a discharge. The removed
valence electron is called a secondary electron and is scattered with less

energy than the corresponding incident primary electron; at any given time

most electrons in the plasma are secondaries.
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Figure I-1.

Ionization cross sections for Xe, Kr, A, Ne and He by electron impact.

naoz = cross section of H atom = 8.8 x 107 !7 cm?




The probability of an ionizing collision (ionization cross section)
generally has a broad maximum for electrons with energy about 100 eV as.
seen in Figure I-1. The D.C. discharge is typically operated with a
potential of 30 to 100 volts between the cathode and the anode wall.
Doubly ionizing collisions can also occur when the primary electrons'
energy exceeds the second ionization energy; however, the ionization
cross section for double ionization is usually much smaller than for
single ionizations. The first and the second ionization energies of
several commonly used gases are listed in Table I-1. Schematic diagram
of the D.C. discharge system is shown in Figure I-2.

a) Space charge limited emission: In the presence of an insigni-

ficant number of neutral atoms (as in a vacuum tube) only a small current
can flow between the cathode and the anode. This current limiting is the
result of space charge due to electrons which accumulate near the cathbde
and repel some of the newly emitted electrons. The space charge limited
emission current is given by the Child-Langmuir law? J =2.33 x 1078 x

v 3/2
. _987_:)A/cm2, where V, is the discharge potential in volts and d is

d

the distance between anode and cathode in cm. For instance, for d = 15 cm,

V=40V, J =26 x 10°% A/cm?.

b) Temperature limited emission: 1In a plasma device, the initially

small space charge limited discharge current ionizes some neutrals. The

ions produced partially neutralize the space charge allowing a larger dis-
charge current which produces more plasma. Eventually a sheath is formed
around the cathode making the plasma the effective anode. This reduces d

to a few Debye lengths. For n = 10*° cm ® and T, = 3 eV, the Debye length
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TABLE I-1
GAS FIRST IONIZATION LEVEL (eV) SECOND IONIZATION LEVEL (eV)
H 13.5% 1 eeee---
He 24.481 54.403
: Ne 21.559 41.07
Ar 15.755 27.62
Kr 13.9 26.4
Xe 12.127 21.2

Source: CRC Handbook of Chemistry and Physics, 1967 Edition (Page E-56).
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is about 1072 cm and the space charge limiting current density, J = 5.9 A/cm?

The total emission current is, however, limited by the filament tempera-
ture. The temperature limited emission current is given by the Richardson

law: J = ATze'w/KT

A/cm® where W and T are the work function and temperature
respectively of the filament metal. The theoretical limit for A is 4TmeK?/h?
120 A/cm® - K°2%. In actual practice, A varies from 30 - 200 A/cm® - K°2,
For tungsten, W = 4.5 eV, A = 60 A/cm® - k°?, and the melting temperature
is 3650° K. The Richardson law gives for tungsten at 2000° K, J = 1.1 X 1073
A/cm?,

Comparison of the temperaturc and space charge limiting processes shows

that in the presence of the plasma, J The

>> J .
space charge temperature
discharge current, which is just the emission current, is, then, a sensitive
function of the filament temperature.

One method of producing a high % ionization is to heat the filaments to
a high temperature (white hot at 3000° K) by high current pulses (50 amps for
a filament of .030" diameter, 3" length). In this manner, plasma densities

-3

exceeding 10'% cm™? can be achieved while preserving filament life span.

c) Balance between production and losses: The plasma production and

losses can be represented by the following rate equation:

% (&) ()
== (3¢ - [
2 ot production ot loss

In the steady-state, we have

()

()
production ot

loss

where N is the total number of plasma particles (electron-ion pair) in the
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system. Let O represent the ionization cross-section of the neutral gas to

be ionized by electrons of energy eV,; n, the density of neutrals; leff the

d

average total distance a primary electron travels before it is lost from the

plasma (effective path length); nv the primary electron flux through a

d

surface of area A enclosing the filaments; and )\ =

ionizi olli-
e the ionizing coll

sion mean free path for primary electrons. Then, in the D.C. discharge

oN

[at] production

I,.
- - dlscharge
noozeff (nevdAl_ noczeff s
(I-1)

in the limit A >> Qe For simplicity, imagine a primary electron discharge

ff*

surface of area A as

n_vo—— A%Z neutral atom targets
© o %0 °8 o° °d%

° ° [
08 o o © ©05%0

— Reff—‘—‘-’
the end of a cylinder of length Qeff filled with neutral targets, recognizing
the product (ne)(lcffA) above as the number of primary electrons per umit
volume times the total volume of neutral atom targets accessible to the

primaries. We can now understand (I-1) by rearranging it as

oN )
[’a?} = (elepeh) (neovy)s
production

and identify neleffA as the total number of ionizing primary electrons avail-
able within the plasma volume at any given instant of time and noovd as the

rate of ionizing collisions by a single primary electron. The limit ) =
1

>> Qeff states that the ionization mean free path is sufficiently long

Ne0
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such that the primary electrons are uniformly distributed inside the plasma

volume. Under this condition of uniform probability of plasma production over

the entire volume equation (I-1) is valid.

There are generally three types of major losses of plasma particles.

1. Loss to the chamber wall.

2. Volume recombination - secondary electrons engage in low velocity
collisions with ions to produce neutrals.

3. Loss to probes, filament supports, any other obstacles, insulators
or conductors which become plasma sinks through surface recombination. The

total plasma loss can be expressed by

nVvV

— 2

(3N
|5t
loss

where V is the volume of the system, n is the plasma density and T is the
plasma lifetime. In a system where ions can flow to the chamber wall freely,
the plasma lifetime is T = 553 where Vs is the flow velocity of ions and L

i
is the scale length of the system. Using this expression, we obtain

[%%J = n vi A
Jloss

where A is the total plasma surface area.




5) Experimental Procedure

a) General familiarization: Leak in enough Argon to raise the neutral

pressure to about3\(l7>3torr and turn the filament power supply to a minimum
voltage with the switch off. Then the switch is turned on, and the filament
voltage is carefully turned up until the cathode wires glow red hot. The
discharge power supply is set to the desired value (about So /) and then the
filament voltage is turned up until the desired discharge current (I,) is
VSoOMA d
obtained/ Notice that as the filament voltage is tumed up, the discharge
current increases rapidly (emission limited current flow). Be very careful
in the adjustment of the filament voltage, since when the filament is hot
enough to emit electrons, it is on the verge of melting. The filament
biased negatively with respect to the plasma is slowly destroyed by
ion bombardment and must be replaced periodically. The filament life

span ~ill be shortened if it is subjected to a large surge of current,

Thus, always vary the filament voltage slowly until the discharge current
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is obtained. The neutral gas pressure can be read off an ionization gauge.
Pressure adjustments are made with a leak valve. Some typical operating

conditions are listed in Appendix B.

b) Saturation ion current measurcment:

r Set up a negative bias *locaVB/%S circuit to obtain the ion saturation
current, Iis‘ Check to sce that current is positive (if not, incrcase bias).
Computec the ratio Ies/Iis' Does this ratio depcend on the plasma density?

How should this ratio dcpend on ion mass?

* The factor %-arises from the following:

% - due to plasma at edge of sheath surrounding probe being composed of
particles with velocity 0 + = toward probe face only.
%-- due to average of direction cosine over hemisphere since particles

may strike probe at angles 0 < 6 < m to the probe plane.
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c) Dependence of plasma parameters on external paramcters: Measure

o
the edestpon saturation current as a function of:

1. DiScharge voltage (with chosen neutral pressure and filament current).

2. Discharge current (with chosen discharge voltage and neutral pressure).
This is adjusted by varying the filament current. Be careful not to turn the
filament current up too high and destroy the filaments.

3. Neutral pressure (10°° - 10°? torr, at fixed discharge and filament
currents).

To make the results of these mecasurcments more accurate, the electron
saturation current and the clectron temperature should be measured by dis-
playing the full Langmuir probe trace on an oscilloscope. The student should
look ahead to Chapter II, pages 43 - 49 for an explanation of the Langmuir
probe method.

Détermine the dependence of plasma density on the discharge voltage}

How does this dependence relate to the variation of ionization cross section
with electron energy (Figure I-1)? Compute the fractional ionization,

n/

N eutral for at least three different pressurc settings. Does the fractional

ionization remain constant for a constant discharge current?

d) Plasma lifetime measurement: A flat stainless steel ﬁlate is placed

in the magnetic field-free region and biased at -75 volts with respect to the
anode. This induces additional ion loss such that in the steady state, the

balance equation becomes

2
|
l

( ) production

where n is the plasma density when there is an ion current Ii extracted by




the plate. The plasma production rate may be expressed in terms of the

discharge current Id and the effective electron path length zeff as

I
N d
<;—— = o(eV,) n_ & —
at}quduction d’ o Teff e
If we withdraw the plate from the plasma, the balance equation becomes
(2) -
T

9 .
t production

If the production rate and the lifetime of the plasma does not change for

the second casef we obtain

nyv nyv I.

2.1 .1 = - =
T m P or T (n2 nl)V Ii'

i) Using the saturation electron current to obtain the plasma den-
sities, and measuring the extracted ion current I, compute the lifetime.

ii) Estimate the effective path length of the primary e}ectrons,
leff’ and express it in terms of the system diameter.

iii) A more direct method of measuring T consists in suddenly ter-

minating the discharge and measuring the decay of the plasma density.

__a(gz) = - nvA or T= v
Introduce different areas of loss surface A and cﬁeck the dependence of
T on A.
Experimentally the discharge current is repetitively pulsed on and

off by a simple transistor circuit as shown in Figure I-6. Plasma charac-

teristics such as density and temperature can be sampled with a boxcar
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integrator or an intensity-modulated scope to be described in Chapter II.

e) Radial density profile: Obtain the radial plasma density profile

by monitoring the electron saturation current as a function of radial
position. Observe a uniform density in the center region and a steep den-
sity gradient in the magnetic field region near the wall. Calculate the
density gradient length L = ('rlf g—:—)-x. Can the steep density gradient
be explained in terms of plasma production, particle reflection or plasma
loss?

f) Quiescence: Monitor the density fluctuations by recording the
fluctuations AI about the mean electron saturation current Io. This can
be accomplished experimentally by displaying I0 on an oscilloscope and

measuring the percentage signal fluctuation. This should be done with a

50 ohm terminating resistor. (Explain)




4) Appendix A: The Vacuum System*>®

All vacuum systems used in the plasma physics laboratory employ a water
cooled oil vapor diffusion pump backed by a rotary vacuum pump, as sketched
in Figure I-7. In the normal mode of operation, vaives 1 (high vacuum valve)
and 2 (foreline valve) are open and valve 3 (roughing line valve) is closed.
In this mode, the diffusion pump is pumping on the system and the rotary (or
mechanical pump is pumping on the diffusion pump. The base pressure of the
system may be as low as 10”® torr (mm Hg) and the foreline preséure should
be in the range 1 - 50 microns (1 micron = 10~3 torr).

The oil diffusion pump cannot pump gases at pressures greater than a
few hundred microns. Attempting to operate the pump at pressures greater
than this will result in the cracking of the diffusion oil and possibly in

the contamination of the system. Never expose a hot diffusion pump to

pressures greater than a few hundred microns. If the system is at atmospheric

pressure, it must be pumped down to less than 75 microns before the high
vacuum valve is opened. This is accomplished by opening valve 3 (with valves
1 and 2 closed) and allowing the mechanical pump to pump the system through
the roughing line. When the system pressure is below 75 microns, valve 3

is closed and valves 1 and 2 are opened.

Neutral gas pressure in the system is controlled by valves 4 and 5.
Valve 4 functions as on-off valve, while the leak valve controls the gas
pressure. The two gases used most frequently in our laboratory are Argon
and Helium, and typical operating pressures range from 2 X 107% torr to
2 x 1072 torr.

Valve 6 is used to bring the system to atmospheric pressure when it is

desired to open the plasma chamber.




Pressure Measurements

The wide range of pressures to be measured necessitates the use of two
different types of pressure gauges. The Hastings gauge, a thermocouple type
of gauge, can read pressures from about 1 micron to atmosphere. The Hastings
gauge serves two purposes in our vacuum systems. When roughing out the system,
the Hastings gauge determines when the pressure is low enough to open the
high vacuum valve connecting the diffusion pump to the system. When the system
is in the normal operating mode, the gauge is used to monitor the foreline
pressure.

In the normal operating mode, the system pressure is too low to be read
with a Hastings gauge, and an ionization gauge must be used. The ion gauge
reads pressure accurately from about 10 3 to 10 8 torr. Operation of the
gauge at pressures above a few microns for any length of time will severely
shorten the tube life. Be sure to turn off the filament of the ion gauge
tube whenever the possibility of its being exposed to higher than recommended
pressures exists. AC power to the ion gauge, as well as to.the Hastings gauge
should be left on at all fimes.

The ion gauge operates by ionizing the gas in the tube and measuring the
collected ion current. Therefore, the sensitivity of the gauge depends on
the ionization cross section of the gas. The gauge is calibraped for dry

air and the correction chart for various gases appears in Table I-2.

Operating Procedures

When the system is in the normal operating mode only the gas contro]
valves, 4 and 5, need be operated. Valve 4 is opened and the leak valve is

adjusted to obtain the desired neutral pressure. Close valve 4 when the
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experiment is completed.

Except in the event of a major leak, or for maintenance purposes, the
diffusion and mechanical pumps are never shut off. If the pumps must be
shut off, steps 1 through 4 in the shut down procedure should be followed.

To pﬁt the system back into operation, follow steps 1 through 5 in the turn
on procedure.

The plasma chamber is left under high vacuum except when it is necessary
to bring the chamber to atmosphere in order to rcplace filaments or make
other changes. In this case, steps 1 and 2 in the shut down procedure are
followed. To resume operation, follow steps 4 through 6 of the turn on

procedure.

Turn On Procedure

1. Turn on water cooling for diffusion pump. Shut all valves.

2. Open valve 2 and turn on mechanical pump.

3. When foreline pressure reaches 50 microns or less, turn on diffusion pump.
The diffusion pump will take about one half hour to reach operating
temperature.

4. When the diffusion pump is hot, close valve 2 and open valve 3 to rough
out system.

5. When the system pressure goes below 50 microns, shut valve 3 and open
valve 2. Slowly open the high vacuum valve (1), while monitoring the
foreline pressure. Do not allow the foreline pressure to go above a
few hundred microns. If the foreline pressure does not drop below 1

hundred microns after a few minutes, there is probably a large leak in

the system, and the high vacuum valve should be shut.
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6. The ionization gauge filament may be turned on after the high vacuum valve

has been open a few minutes.

Shut Down Procedure

1. Shut off ionization gauge filament and close high vacuum valve. (Valve 2
should be open and valve 3 closed.)

2. Open valve 6, bringing the plasma chamber to atmospheric pressure.

3. Shut off diffusion pump heater. Allow one half hour for the pump to cool.

4. When the diffusion pump is cool, the mechanical pump and the cooling water

may be shut off.
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PLASMA BARREL
EXPERIMENT

Chapter I1. Basic Plasma Diagnostic:.

Onc of the most importunt and frequently used plasma diagnostic tech-

niques is the Langmuir probe method. This method, which was first intro-
.1 .
duced by Langmuir® about fifty vears ago, can be usced to determine the values

ot the ion and electron densities, the clectron temperature, and the clectron

diwtribution function. This method involves the measurement of electron and

len currents to a small metal electrode or probe as different voltages are appliced
to the probe. This viclds a curve called the probe characteristic of the plasma,
Another important technique, using microwaves, is frequently employed
tooeasure plasma parine

ameters, especially in situations where it is difficult
i ooansert probes into the

medium,  An interferometer method is used to

termine the phase <t of the microwaves transmitted throagh the plasma

average electron density is deduced from the amount of phasce shift.
By combining the microwave or radio freguency method with the probe
ndgue, we can measure the density to better than 1% accuracy. Electro-

aetic waves propagating along a density gradient with frequency

(e
0
cote clectron plasm waves at the eritical density laver 2 {for which
[
SN RSN whoere o is tiie plasng treogquency . Since the propapation of
i i
woedectron plasma vives 13

sensitive tunction of the density profile,
narctul mapping of the cloctron plasma wave propagation characteristics
I reveal the density along its propagation

path. This more advanced

hod is described in Chapter V.

17 Langmuir Probe

The fundamental plasma parameters cuan be

determined by placing a small

BRE P



-8

conducting probe into the plasma and observing the current to the probe as
‘a function of the difference between the probe and plasma space potentials.
The plasma space potential is just the potential difference of the plasma
volume with respect to the vessel wall (anode). It arises from an initial
imbalance 1in electron and ion loss rates and depends in part upon anode
surface conditions, and filament emission current.,

Referring to the probe characteristic, Figure 1I1-1, we sece that in region
A vhen the probe potential, Vp,is above the plasma space potential, Vs’ the
collooted electron current reaches a saturated level and ions are repelled,
while 1n region B just the opposite oscurs, By cevaluating the slepe of the
electron 1-V characteristic in region B the electron temperature TC is ob-
tained, and by measuring the ion or ¢lectron saturation current and using
the o measurement, the lensity can he computed,

itie cnurrent collectaed by o probe 19 given by summing over all the con-

tritutions of the various plasma species:

! n,o{g. v,
oo ll i ()
wie e A s the total coltecring surface arca of tho probe; vio® the average

-. . >
vetoctty of species 1, and v,o= vfj{v) dv for unnormalized fj(v). It is
well known in statistical mechanics that collisions among particles will

recult inoan cquilibrium velocity distribution f given by the Maxwellian

fisvvtion:

] >
: o 1

Ty (2)
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This distribution function is used to evaluate the average velocity of each
species.
We will first consider a small plane disc probe which is often used in

our cxperiments. When it is placed in the yz plane, a particle will collide

with the probe and give rise to a current only if it has some v, component
of velocity. Thus, the current to the probe docs not depend on vy or v,
The current to the probe from each specics is a function of V = Vp - Vs'
L 1 . L 1
» 25KT \ 2 -5m v 2mKT "2 -Emavz2
1(v) = nqA | d _— Lxp | —meet— : Exp [ ==
() ¥ [ o vy ( m gl K1 d\z m P KT
-0 Q [ - (J a
1
: 27KT 2 -% m v ?
. { l\' vV rl_ } \p _.-__LL .
TYxtx m a KT
AU a a -
min (3)
bothe lower limit of integration in the intepral over vy is Viin since parti-
..‘( \‘ l '
cles with voocomponent of velocity less than v, = (wJ")Z arc repelled,
X min my

l‘j;’ul" 11-2.

thie integrals over Vo and v_ in (3) give unity so the current of each

spect s 18 just

2

2RI - -%mavx
1{(v) = ngA f dv v ( ) Exp (————~——) .
v X X m KTOl (4)

In this region all electrons

4)  The electron saturation current, 109

with v, component toward probe arc collected.  We obtain the clectron satu-

ratlion current



\

repelled

collected

y » V,
min
Figure 11-2.
Electron Velocity Distribution
All electrons with energy |eV| greater than = m vminz are collected.
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- 2nKT \-+ Ay 2 KT | +
I = -neA f dv_v ( - o) “ Exp (_ZE%_E_):: qny\(ia_i) 2
e o FX\ T e Mo, (5)

Similarly, in region B and C where Vp < Vs and electrons are repelled,

the total current is

21KT %m
I(v) = IiS -ncAr dv v ( ) Exp( ).
Vo (6)
s . 1 2 _ ,
Substituting >, Voin = C eV, (6) becomes
1
K1 =
_ e\ 2 eV
I(v) = Iis -necA (2nm ) Exp o
e e (7)
since V. < 0 in region B and C. Equation (7) shows that the eclectron

current increases exponentially until the probe voltape is the same as the

pla i space potential (V = Vp - \"S = (),

b)  The don saturation current, 115: The ion saturation current is not

sir.ply given by an expression similar to (5). In order to repel all the elec-

tre.s and observe Iiﬂ’ VP must be negative and have a magnitude near KTe/e

. . .. - . . . 2 . . o .
ar hownoan Figure T1-3. The sheath criterion’ requires that ions arriving at

th periphery of the probe sheath be accelerated toward the probe with an
enerpy *KTC, which is much larger than their thermal energy KTi. The ion

satiuration current is then approximately given as

) 1
2KT =
I.q = ncA(——o—) 2 .
H ™ (8)

tven though this flux density is larger than the incident flux density

At ihe periphery of the collecting shoath, the total particle flux is still

eanay

it
i



‘ Potential

Figure 11-3,

o

~ieath potential as function of dist

ance x from infinite plane probe.
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conierved because the area at the probe is smaller than the outer collecting
? -
arcuy ut the sheath boundary.

¢) Floating potential, Vf: Next we consider the floating potential.

When Vo= Vf, the ion and electron currents are cqual and the net probe

current is zero. Combining equations (7) and (8), and letting I = 0, we get

c mi 2
V.= - — In ( :) .
f c 4mm 9)

d) The electron temperature, TC: Mcasurcement of the elcectron

toaperature can be obtained from equation (7). For ]is << T we have
, 1
kL
, c\ 2 .. cV eV
V) T o-neA Exp (=)= 1 Exp [ ——
Lv) = -ne (377m> p(m) es KT)
c e e (10)
denilf ¢ |
v T KT
‘ c (11)
iv oborterentiating the logarithm of the electron current with respect to
ticobe voltage Vo for V< 0, the clectron temperature is obtained. We note

tretothe slope of inl vs, V is a straight line only if the distribution
1© . Mawellian,

) Mcasurement of the clectron distribution function, fc(v ): The

clesiron current to a plane probe could be written in a more general ecxpres-

sivic as (agaln neglecting the ion current)

I = nqA [m v f(v )dv = ngA [ﬁ f(qV) d(qV)
\Y x X e qV (12)
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where q = -e, the clectron charge. This is a very simpi. way of obtaining

the electron energy distribution function. If we measure f(vx) as a function

of plasma position, we can obtain the phase space distribution f(vx,x). A

further refinement is to observe the distribution at a given time T after a
ccrtain event using a sampling oscilloscope. This results in the complete

description, f(v,x,1), of the electrons in a given system,

2) Double Probe®~¢

A double probe consists of two electrodes of equal surface arca, scpa-
rated by a small distance and immersed in the plasma, Figure 11-4, One
probe draws current I, while the other is drawing current I,. To find the
clectren temperature of the plasma, we consider quantitatively the current
to the probe for various potential differences between the probes, Figure I1-5.
Siinve the probes are floating at Vf of the plasma, i.c., the double probe
cirvult has no plasma pround (anode) connection, the total current in the
probe circuit must be cero. From (7) and (5), the currcnt collected by

p1ebe F1 s

11 ; I; is 11 es EXP\\ KTO (13)
U«in, the definition of the floating potential with (7),

1 Ikn(iﬁk;;:ilxz I

¢S SN kTe / is ' (14)
hiice (13) becomes

T s [l-!\l'(;%>’ (15)
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Typical Double Probe Manual Sweep Circuit. Note that there is no
connection made to plasma ground in this diagnostic; it is independent of
plasma potential.
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In the same manner we get

eV

. ; _2
N S Exp(KTe ]. (16)

If the probe areas are equal, then (8) implies
I .. =1 ., =1, . 17)

7o net probe circuit current motivates the definition

i e e T R L TR T P

Comb:ining this with equations (15), (16) and (17) yields

AT R T et - v

- qu ey
- = Exp (-rm—
-1 Iis kTe ) (18)

whi 7o the double piobe potential is defined b)'UJEVI - V2. Solving equation

1~} for 1

ey
I = -IiS tanh(ai-)

3 (19)
{ Dirierentiating equation (19) with respect to ¢ at ¢ = 0

dl, s ey l e )

: = = -1. sech® —— o

H (!"' g o= =

? g o1y 0 is 2KTc ¥ 0 \2KTe ' (20)
? i.c., electron temperature is related to the slope of the double probe
i characteristic by

: d1 . <_e_)

; A dy |y = 0 is 2KTe (21)

A AT e S,

P
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The double probe can collect a maximum current cqual to the ion
saturation current and does not disturb the plasma as much as the single
probe with its anode connection. However, the small amount of detected
current (microampere range) does warrant a much morc sensitive detection
circuit, as in Figure II1-4.

The student is required to compare the electron temperatures and

plusma densities obtained with the single and the double probes.

. ) 0
3) Microwave Interferometer ™ ® !

The basic idea behind this diagnostic scheme is as follows. The
plasma acts like a diclectric medium to electro magnetic radiation, and
a wave propagating through the plasma will suffer a change in phase

A =

I
Jo (Macuum - kplasma) dx (22)

where 1 is the path length of the plasma, k = £ is the free space wave
p I P

vacuum C

nuaber of the electromagnetic waves, and k
plasma

wave. propagating in the plasma, which is given by the dispersion relation

1

(mz - w )2
Y = ——ﬁ——
kplasma c (23)
1
. 4mne? \ 2
Here w 1s the wave frequency, wpe = ~ , the electron plasma frequency

and - is the speed of light. 1If the plasma density is uniform over the dis-

tance L, we obtain from equation (23) for the phase shift

w uje2 2
a¢ = 2 1-(1-—57—- L.

(24)

T awe Cen a SRR R R e witaen o i < © T A, Y = e

ot

0 1 g

is the wave number of the

- -
TR A s

e r- emten
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a) Density mcasurcment by phasc shift: When wpe << w (note this

restriction) we obtain a relation between the phase shift and plasma density

w 2
w |1 pe
A = = |5 ~5—|L
c |2 w
(25)
4m e?
Defining the critical density by-—-{%—— s w? we can express equation (25)
e .
alternatively by
_no_ 284 where kvac = %
e kvacL ’ (26)

Since all laboratory plasmas have a certain degrec of inhomogeneity, i.e.,
some density gradient, the phase shift A¢ is an integrated quantity as
represented by equation (23). However, the density profile can be obtained
by rvlative density mecasurement using movable probes. If we write n(x) =
nof(x;, where f(x) contains the spatial variation in the plasma density,

a v Iation similar to equution (20) can be achieved using

2n A
¢ ¢

L
kvac f f(x)dx
0 (27)
Thur with the help of the radial probe measurement on the relative density
profile, the microwave interferometer technique could be used to obtain the
absolute density at any radial position.

b) Observation of cut-off: For w = mpe’ the relation given by equation

(200 or (27) is no longer valid (why?). One must use equation (23) or (24)
dizc. tly and the relation between A¢ and n becomes quite complicated. However,

wheto o 2 Yhe? the wave number becomes purely imaginary and no propagation is
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possible. By observing the cut-off, we can calculate the maximum density
in the plasma, MNax = Do where n. 1s the critical density defined above.
The student is required to comparc this microwave method with the Langmuir

probe result,

4) Experimental Procedure

a) Follow the procedure as described in Chapter I to obtain a D.C.
discharge. Clean up probes and set up a sweeper circuit as described in
Appendix A. Observe a Langmuir characteristic curve by using the oscillo-
scope. For recording, the single sweep modc must be u;ed with sweep rate
of 1 to 2 seconds per cm, such that the mechanical movement of the recorder
pin can follow the changes of the signal. The manual sweeping circuit of
Fiyure IT-7a is a possible substitute for oscilloscope and automatic
sweeper when recording the Langmuir curve graphically.

b} Details of the probe characteristic: Take several single probe

tr.ces using the probe sweeper circuit and the x-y recorder. Replot each
trice on semi-log paper and subtract out the ion saturation current to

obtiin  the current contributed by the secondary electrons. At low neutral
prossures the primary electron current will appear as a long, high tempera-
ture (gently sloping) tail with negative current in the ion saturation region
of probe bias. In this case, subtract the primary electron current (as well
as the ion saturation current) from the total probe current to obtain actual
sccondary electron current. (Primary electron current collected for a given
probe bias can be estimated by extrapolating the straight-line primary tail.)
Obt:in the electron temperature from the slope of the curve and the density
from both the ion and electron saturation currents. Experimentally determine

how the ratio Ies/Iis depends on the mass ratio.
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You will find that the primary electron current usually overshadows
the ion current. However, the ratio of primary electron to ion current
can be reduced significantly and the ion saturation current can be observed
by simply raising the neutral pressure to about 10°? torr (explain why).

c) Double probe: Set up the double probe manual sweeper circuit with

the x-y recorder and obtain a double probe trace. Compute the density and
electron temperature and compare the result with n and Te obtained from a
sinyle probe characteristic at the same time in the same region of the plasma.

d) Microwave interferometer: The X-band microwave interferometer set-

up is shown in Figurc 11-6. Microwave signal generated by the oscillator
i« split into two paths, one propagating through the plasma, V1 cos (wt + ¢l),
th- other through a variable phase shifter to provide a reference signal,

vos (wt + ¢ ). The signal propagating through the plasma is received by
2

@ pickup horn on the other side of the vacuum system, and then added to the

- rerence signal by the macgic tee: V =V cos (wt + ¢ )+ V cos (wt + ¢ ).
’ sum 1 1 2 2

ials signal is then fed into a crystal detector, which produces a current

2

sronal 1 @ V‘Sum. By taking a time average of the current I from the crystal,

A v z 1. 2 : , . .
S RERNE > = T s 5\22 + ViVy cos ($1 - ¢3). (28)

I.r o given plasma density, ¢ 1is fixed., Vary V with the variable attenuator
1 2

and ¢ with the phase shifter to obtain a null (¢ ¢ = m). Be careful not
? 1 2

to overattcenuate the reference signal V, as this will result in a phase

tadependent signal [V, = 0 in (28)].

The crystal diode output signal is so small that a high gain amplifier

nist be used. Furthermore, the microwave signal should be gated on and off
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(i.c., square wave modulated output) to avoid confusion over D.C. shifting
of the output signal in the high gain amplifier.

Turn off the plasma (by turning off the discharge), find the null again
and record A¢. In finding the null, large errors can develop. To minimize
these, plot <Vsué5 versus ¢Z for the case where the plasma is present and
the case where it is turned off to obtain two cosine curves offset by phase
A¢. Although this procedure is tedious, it is recoﬁmended for improved accuracy,.

Calculate the plasma density using equation (26) and compare the results
with those obtained from the probe measurements. If the density is non-
uniform, try to correct the result by measuring rclative density profile
uting a movable Langmuir probe. Difficulties arise whenever the dimensions
ot the plasma container are comparable to the wavelength of the microwaves.
i this case, the waveguide horn is not large cnough to sharply define the
miorawiave beam and unwanted cavity modes are cxcited in the vacuum chamber
s . result.,  These modes have multiple paths through the plasma and can
dr: tically alter the measurement of A¢. lHence, steel wool has been placed
neas both the sending and receiving horns to attenuate these undesirable

raltiple path signals.

¢) Dlensity Mcasurement via Plasma Resonance: The most accurate local

dersity measurement in an inhomogeneous plasma is achieved by exciting the
lo-al plasma resonance wp(xj. An oscillating electric field of frequency w,
is vaternally excited in the plasma by a capacitor plate oriented to give an
el viric ficld along the density gradient as shown in Figure 1I-7. \here-
evir the external frequency matches the local plasma frequency wo = wp(xo),
tho umplitude of the external electric field is found to be enhanced by an

ord r of magnitude or more. Tnis resonance is best detected by noting the




deflection of an electron beam traversing the rcsonant location (Figure 11-7)
in a direction perpendicular to the density gradient. (A detailed description
of this electron beam diagnostic is to be presented in Chapter V.) Since

the cxtermal oscillating field frequency w, can be precisely measured, the
p)asmxdensity can be determined to better than 1%. A Langmuir probe can be

calibrated using this technique.

UESTIONS

Do does thie don sataration current depend on KT ?

e
. It there is an excess of primary electrons in the plasma, what kind of
ctfect ean one see by using (1) single probe, (2} double probe and (3)

microwave interferometer? Can you measure the density of the primary electrons?

‘a1

for a plasma consisting of positive and negative ions of equal mass, draw
the probe characteristics, carefully labeling the quantities Is+’ Is-’
Vf and VS. How do you deduce T+ and T ?

4.  What processes determinc potential difference between the plasma and the

anode?

)

When a fine conducting grid (called 'plasma demon') is biased to some
rnsitive potential, it was found that the eclectron temperature increases

v oa factor up to 2 - 3, Can you explain this effect?

SRS & 4 o S SRR Al )2, 5 g NIRRT G 1 " ™ O
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is then 5.1, and we conclude that the conduction hole around the - - Chapter 4 ﬂ,—/‘i‘— m———
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sequently is - metimes called the method of Langmuir probes. Basically,
an electrosta... probe is merely a small metallic electrode, usually a wire,
inserted into a plasma. The probe is attached to a power supply capable
of biasing it at various voltages positive and negative relative to the
plasma, and the current collected by the probe then provides information
about the conditions in the plasma.

It is a fortunate property of plasmas that under a wide range of
conditions the disturbance caused by the presence of the probe is
localized, and the probe can act truly as a probe in the sense that its
very presence has no effect on the quantities it is measuring. We shall
find, however, that under certain circumstances, particularly in the
presence of a strong magnetic field, the disturbance is not localized, and
the probe current then depends not only on the plasma parameters
(density and electron and ion temperatures), but also on the way in
which the plasma is created and maintained. In such a case the method
. becomes obviously less useful.

In spite of the difficulties which arise when probes are used in present-
day plasmas, the method is an important one because it has one advantage
over all other diagnostic techniques: it can make local measurements.
Almost all other techniques, such as spectroscopy or microwave propaga-
tion, give information averaged over a large volume of plasma.

Experimentally, electrostatic probes are extremely simple devices,
consisting merely of an insulated wire, used with a dc power supply,
and an ammeter or an oscilloscope. Nature, however, makes us pay a
penalty for this simplicity: the theory of probes is extremely complicated.
The difficulty stems from the fact that probes are boundaries to a plasma,
and near the boundary the equations governing the motion of the
plasma change their character. In particular, the condition of quasi-
neutrality, which obtains in the body of the plasma, is not valid near a
boundary; and a layer, called a “sheath,” can form, in which ion and
electron densities can differ and hence large clectric fields can be sus-
tained. A fundamental result of the original work of Langmuir and
H. M. Mott-Smith, Jr. (sce 7, pp. 23-132) was that in many cases the
sheath could be considered a thin layer ncar the probe surface and that
the quasi-ncutral equation could be used up to a “‘sheath edge,” which
in practice had a well-defined position. In recent years considerable
progress has been made in the application of boundary-layer techniques
to this problem, so that the artifice of a sheath edge has been removed
and the continuous transition from boundary to plasma can be described,
at least in the collisionless case. ‘The sheath then appears as a natural
consequence of the nature of the mathematical equations, and the
accuracy of the approximations which Langmuir made with great

Be heaae o wanan 4 aaacasa s [

“nsight in the early days of plasma physics has been borne out in - rge

““number of physically interesting cases.

It will be our purpose to summarize the available theoretical results,
giving a sketch wherever possible of the wayv in which they were obtained,
and to supplement this with practical information on experimental
techniques. In Sec. 2 we begin with a short introduction to the physical
notion of sheath. In Sec. 3 we shall present the well-documented theory
of probes in a collisionless plasma. Although the theory of probes in the
presence of collisions and magnetic fields is still in a primitive state, we
shall treat this in some detail in Secs. 4 and 5 because of the current
interest in magnetically confined plasmas. In the final sections we shall

describe specialized techniques and practical considerations in the use

of electrostatic probes. Quantities will be in cgs-es units.

The literature on probes is so extensive that we have not attempted
to include here a complete survev of it. However, we have tried to include
references to the most recent papers, from which references to earlier
works can be obtained.

In order to get an over-all view of the situation, let use look at a
physical plot of probe current versus probe voltage, as shown in Fig. 1.
Here negative, or electron, current to the probe is plotted against 17,
the probe voltage with respect to an arbitrary reference point. This plot
may be obtained continuously in a steadyv-state discharge, or point by
point in a pulsed discharge, the probe bias being changed from pulse to

Je

PE—

C

i, 1. Schematie of i typical probe current-voltage characteristic.
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pulse; or the  ‘ire curve may be obtained in a few microseconds in a
pulsed discharge by the use of a fast-sweeping voltage source.

The qualitative behavior of this curve can be explained as follows. At
the point }',, the probe is at the same potential as the plasma (this is
commonly called the space potential). There are no electric fields at
this point, and the charged particles migrate to the probe because of
their thermal velocities. Since electrons move much faster than ions
because of their small mass, what is collected by the probe is pre-
dominantly electron current. If the probe voltage is made positive
relative to the plasma, electrons are accelerated toward the probe.
Moreover, the ions are repelled, and what little ion current was present
at 1", vanishes. Near the probe surface there is therefore an excess of
negative charge, which builds up until the total charge is equal to the
positive charge on the probe. This layer of charge, the sheath, is usually
very thin, and outside of it there is very little electric field, so that the
plasma is undisturbed. The electron current is that which enters the
sheath through random thermal motions; and since the area of the
sheath is relatively constant as the probe voltage is increased, we have
the fairly flat portion A of the probe characteristic. This is called the
region of saturation electron current.

If now the probe potential is made negative relative to 17, , we begin
to repel electrons and accelerate ions. The electron current falls as V,
decreases in region B, which we shall call the transition region or
retarding-field region of the characteristic. If the electron distribution
were Maxwellian, the shape of the curve here, after the contribution of
ions is subtracted, would be exponential. Finally, at the point V,,
called the floating potential, the probe is sufficiently negative to repel all
electrons except a flux equal to the flux of ions, and thercfore draws
no net current. An insulated electrode inserted into a plasma would
assume this potential.

At large negative values of 17, almost all the electrons are repelled,
and we have an ion sheath and saturation ion current (region (). ‘T'his is
similar to region A; but there are two points of asymmetry between
saturation ion and saturation electron collection aside from the obvious
one of the mass difference, which causes the disparity in the absolute
magnitude of the currents, The first point is that the ion and clectron
temperatures are usually unequal, and it turns out that sheath formation
is considerably different when the colder species is collected than when
the hotter species is collected. ‘The seccond point is that when there is a
magnetic field, the motion of the electrons is much more affected by the
ficld than the motion of the jons. These two points, which were neglected
in the original theory of Langmuir, are responsible for making impossible

A

simple and straightforward application of probes as origt 'y

‘proposed by Langmuir.

If it is possible to place a probe in a plasma in such a way that the
plasma is not greatly disturbed by the probe, then one can hope to
obtain from the probe characteristic information regarding the local
plasma density n, electron temperature kT, , and space potential V.
The shape of part B of the characteristic obviously is related to the
distribution of electron energies and hence gives kT, when the distribu-
tion is Maxwellian. The magnitude of the saturation electron current is
a measure of n(kT,)1/%, from which n can be obtained. The magnitude
of the ion saturation current depends on n and kT, , but only slightly on
kT, , at least in the usual case where kT; < kT ; hence ion temperature
is not easily measured with probes. Finally, the space potential can be
measured by locating the junction between parts 4 and B of the curve
or by measuring ¥, and calculating V. In the presence of collisions or
magnetic ficlds, the probe currents depend also on the transport coefh-
cients of the plasma. In many instances, such as in a magnetic field, the
absolute magnitude of n cannot be calculated with certainty; however,
probes are still useful for finding the relative density in different parts of
the plasma. In unstable plasmas probes are useful for measuring fluctua-
tions in # or V', , which are simply related to fluctuations in probe current
or floating potential.

2 Sheath Formation

2.1 'THE DEBYE SHIELDING LENGTH

Let us consider the effect of introducing a potential ¥, at some point
x == 0in a plasma of dimensions R and undisturbed density 7, . The
potential is given by Poisson’s equation, which, for simplicity, we write
in one dimension:
av
— == = dme(ty - Mg). n

A

If we normalize V, n;, n,, and x as follows:

S L e . 2
T kT my I ¢ R’ (2)
the equation becomes
I dh
R .¢/§'~’ "I("I) v‘-(n). 3
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where
h = (kT /4nnye?) /2. )

Since the quantity /i R is small in a plasma (by definition), Eq. (3) has
the appearance of a boundary-layer equation; that is, the highest deriva-
tive in the equation is multiplied by a very small number. This means
that the equation without the derivative, v, = v;, which is called the
‘“quasi-neutral equation” or the “plasma equation,” is valid over scale
lengths of the order of R and that n changes considerably only within a
small length of the order of 4 next to the boundary in order to satisfy the
boundary condition at § = 0.

For example, let the ions be infinitely massive, so that »; is constant,
and let the electrons be in thermal equilibrium:

Mo == Nge™". (5)
Poisson’s equation then takes the form

d

;1—(\—111)—2 =1 —ee"=x n. (6)

Thus for small 5 the potential decays like
"= Pgem ity @)

and the externally imposed potential is shielded within a distance of the
~order of h. The length h is called the Debye shielding length.

2.2 Tue CHiLp-LLANGMUIR LAw

Let us now examine another idealized situation, that of two infinite
plane-parallel plates, one which emits particles and is at zero potential,
and the other which is perfectly absorbing and is at a potential V. "This
is shown in Fig. 2.

Consider first the case of emission at plane 4 of only one species of
particle, with charge ¢ and mass m, emitted at zero velocity. ‘The
particle velocity at a position where the potential is 17 is then

v (2el’/m)' 2, (8)
If the emitted particle current density is j, the particle density at x will be

n(x)  j[2el(x)'m] ' 9)

e
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F1c. 2. Schematic of the potential distribution between two planes, one of which is

emitting electrons.

Poisson’s equation becomes
d*Uldx? = 4nej(2eV[m)-1/2,

Multiplying by dV/dx and integrating from x = 0, we have

1/dINz¢ (Y (2el7y 12 I4

2 (@) o[ (S) e (10)
o Am(2me) 22 |- (—‘5'7) -

1]

By space-charge-limited flow, we mean that (dV/dx), vanishes. We then
have
1" VAL - (8mf) 2(2me)! /4 d. (1)

Integrating from v -~ Otox  d, we have

1034 (8m)*(2me) * d
or
2\ 32
FAN-/ (12

which is the Child-Langmuir 3-power law for space-charge-limited
current flow between two planes separated by a distance d with a potential
I'y between them,
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The top ¢~ “e of Fig. 2 represents the case of small j, when the space
charge is smait and the potential therefore a linear function of x. The
middle curve shows the case when j is at the value given in Eq. (12);
then the electric field is zero at 4 and a further increase in emission does
not increase the current because no field acts on the particles at 4.

If now the particles are allowed to have finite velocities when they are

emitted, their inertia allows them to leave the surface 4 even when no -

electric field is present. This has the effect of depressing the potential
below zero and building up a field which opposes the emission of
electrons. The potential curve then looks like the bottom curve in
Fig. 2, with a potential minimum V, at x = x_, . In the case of a
Maxwellian distribution of emitted electrons, the potential distribution
can be found by integrating over the initial distribution of temperature
kT. To first order in 5~1/2, where ) = eV/kT, Langmuir (7, p. 379) finds
for the space-charge-limited current

= () o e 1+ 32D

This shows clearly the increase of current due to finite temperature. The
values of V', and x, in Eq. (13) must be found by a more complicated
procedure, but for practical purposes they are small and may be
neglected. Although we have for definiteness specified electrons, the
Child-Langmuir law obviously holds also for ions if the appropriate
mass and temperature are used.

(13)

2.3 THE SHEATH CRITERION

Let us now introduce a second species of charged particle, so that we
have a species 1 which is accelerated from A to B and a species 2 of
equal and opposite charge which is repelled from B. We want eventually
to identify surface 4 with the surface of the plasma and B with the
surface of a wall or probe. Since a plasma is very nearly neutral (by
definition), we require that n, ~ n, at 4.

Our purpose in treating this problem is to gain some physical insight
into the limitations of the approximation of a definite sheath cdge
which separates the plasma region, in which there are no clectric fields,
from the sheath region, in which large fields can exist. If the plane 4 in
Fig. 2 is to represent the sheath edge, then to ensure a smooth transition
to the plasma solution, the electric field of the sheath and its derivatives
must nearly vanish there. We shall find that this condition imposes a
requirement on the velocity distribution of the particles emitted at A
and collected at B.
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For simplicity, we shall treat first the somewhat degeneratc se in

"~ which Ty = 0, i.e., the accelerated particles have no random motion. In

this case we must give them a nonvanishing drift velocity v, at A, since
otherwise their velocity at 4 would be 0 and their density infinite if
their current is to be finite.

Since there can be no particles of type 1 traveling from B to A, the
distribution function of 1 is

£1(0,v) = nd(v — vy),
filx, v) = n8 [(1’2 + 2%%/)1/2 - 'vo] .

v, >0 (14)

We now assume that the potential B is so large that almost all particles
2 are repelled; their distribution will then be Maxwellian:

f,0) = mo 517':’21-;)”2 exp [ —m, (o2 + ?_fnz_:i)/m,] . (15)

With the dimensionless variables

gl _ my \1/2 _Amnggh\ 1
Kty v o u=v(gs) - f"‘(krz) > (16)
this becomes
my 2 1 my
fom ) = ma () -exp (— Ewt =), (17)
where we have set ¢, = —g¢q,, and where v, = (2kT,'m,)'/2. Note that

since particles | are accelerated, ¢,V is always negative, and therefore 5
always positive. Similarly, Eq. (14) becomes

filn, u) = ngwg8[(u* — 7)'" — ug). (18)
The densities are found by integrating with respect to ¢, du:

ny, - NHye "
< d :
m e "OIb(-" ) —(T'—‘ll—%!f)"—ﬁ == ng(l | qug®yte, (19)

Paoisson’s equation is then

7' ongf(1 § qu )R e M) (20)



lis FHANCLID b Llikay

With the ur - ™ integrating factor »’, the integral from 0 to x is

For the moment, let us neglect 7. The left-hand side in Eq. (21) must
be positive; hence

REeS

203[(1 + qug? 2 — 1] > 1 —e (22)
Near the origin 7 = 0, this inequality becomes, upon expanding,

2w dmug® — dntug) > — 2

2.1°2
= (Mt 1
Uy = (2kT2) vy (23)

This is the original sheath criterion derived by Langmuir (2, p. 140)
and Bohm (3, Chapter 3). It states that in order for the sheath equation
to have a solution for small 7 there is a restriction on the streaming
velocity assumed for particles | at plane 4: namely, that it be larger
than (T, m;)'/2.

The most common application of this criterion is in the case of ion
collection, in which ions are particles 1 and electrons particles 2. In
many discharges the ion temperature is much lower than the electron
temperature, so that the assumption T; = 0 is applicable. Equation (23)
then says that the ions must stream into the sheath boundary with an
energy greater than 1k7T,, which is much larger than their thermal
energy.

The reason for this restriction on the cold species can be seen by
plotting the density, as given by (19), logarithmically against potential 7,
as shown in Fig. 3. The trapped particles 2 have a density which appears
as a straight line on the semilog plot. If " is rigorously zero, the curve
for n, starts at the same point n, as does n, , and its initial slope depends
on u, . If u, is small, n, is less than n, for small 5. Referring to Poisson’s
equation,

ngy oMy - ny,

we see that if 5, = 0 and 7 is to be positive, n” must be positive near
n = 0. If u, is too small, " is negative, and this will not permit a mono-
tonic solution for y(¢). The solution will oscillate between two values of 9,
corresponding to an imaginary value of 3’2 If u, were large, we see from

30 = no{202[(1 + 7?2 — 1] + e — 1} + $ 2. @ =

S,
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Fic. 3. Schematic of ion density (n,) and electron density (n,) distributions in a
sheath as a function of potential 5, for various values of incident velocity u, of the cold
ons,

Fig. 3 that n, is always larger than n,, and the problem does not arise.
The critical condition is that

(%), = (50, @)

From Eq. (19), this is just

—%"u;‘*:——no, or ul=
the same condition as Eq. (23). This equivalence was first pointed out by
Allen and Thonemann (4).

'The proof given above is subject to the criticism that %, %', and "
cannot all vanish at x == 0, since then only the trivial solution is possible.
In practice 5, and 7, have small but finite values. If 5" is positive, for
example, then by Eq. (20) 7, must exceed n, at x == 0, as is illustrated
by the dotted line in Fig. 3. The curve n,(») may then dip below n, , and
the eritical value of u, is reduced. This effect, however, is slight as long
as the Dcebye length is small compared to the characteristic lengths in
the plasma, such as the mean free path or an ionization length. The
effect of finite 7, and 5, has been computed by Ecker and McClure (5).

If now the accelerated particles are allowed to have a spread in energy
at the sheath edge, the critical drift velocity u, given by Eq. (23) is
considerably reduced; however, the value of u, then cannot be expressed
simply, even for a Maxwellian distribution.

DO

’
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Wemay  point out the implications of the sheath criterion on the

probe characreristic of Fig. 1. Consider the usual case in which T, <LT,. 7%

Then in part A of the characteristic, where electrons are accelerated
toward the probe, the sheath criterion (23) tells us that the electrons
must enter the sheath with a drift velocity greater than (kT ;/m)r/2,
Since this is small compared to the random electron velocity, and the
finite electron temperature makes the criterion even less severe, the
current entering the sheath is closely approximated by the random
electron current in the plasma. Use is made of this in Section 3.1. On
the other hand, in part C of the characteristic, where ions are accelerated
to the probe, the sheath criterion requires the ions to have a directed
velocity greater than (kT ,/M)!/2, which is much larger than the random
velocity. The velocity distribution at the sheath edge is then unknown
and the ion current must be computed laboriously, as is done in Sec. 3.3.
However, for sheaths thin compared to the probe radius, so that the
geometry is almost planar, it will turn out that the ion current density is
given roughly by n, times this critical velocity. This is essentially the
reason probes are insensitive to ion temperature. The situation is, of
course, reversed if T is much larger than T, .

We have, for purposes of illustration, considered the case of an infinite
plane probe, but it is clear that such a probe cannot actually exist, since
in the absence of ionization all the plasma would eventually be lost to
the probe. The probe current in steady state is given by the rate of
ionization in the plasma, and therefore the probe is in a sense actually
an electrode. As we shall see in Section 3.3, the situation is different in
the case of spherical or cylindrical probes, for which the probe current
depends only on the properties of the plasma far from the probe and not
on the mechanism which produces the plasma. However, except for
geometrical factors, the basic prediction of the plane sheath criterion is
still valid; that is, the shielding of the probe by the sheath is incomplete,
and a total potential drop of order of magnitude kT, must exist in the
plasma region to accelerate particles 1 to this energy by the time they reach
the point ncar the boundary where the quasi-neutral assumption fails.

Further discussion of plane sheaths, which necessarily involves the
ionization mechanism, may be found in the work of L. Tonks and
Langmuir (2, p. 176). The particularly simple case of no collisions has
been treated by Harrison and Thompson (6), Auer (7), and Self (8).
A rigorous boundary-layer analysis of the plasma-sheath transition has
been given by Caruso and Cavaliere (9). 'The stability of the ion stream
in this case has been examined by Chen (/0). The effect of a weak
magnetic field on the sheath criterion has been studied by Allen and
Magistrelli (/7).

——

3 Probe Theory in the Absence of Collisions and ,
Magnetic Fields -

The exact way in which the plasma parameters are related to the
probe characteristic will depend on the shape of the probe and the
relative magnitudes of the collision length, the probe dimensions, the
Debye length, the Larmor radius, and so forth. In this section we shall
discuss the simplest case—that in which both collisions and magnetic
fields are negligible. This case is essentially that covered by the original
theory of Langmuir. There is, however, one exception; that is, in dealing
with saturation ion current the effect of acceleration of ions in the
plasma region (which we discussed in connection with the sheath
criterion) was at first unknown to Langmuir. For the proper treatment
of ion saturation current we shall have to turn to comparatively recent
work. We shall confine ourselves to plasmas consisting of singly charged
positive ions and electrons. Extensions of the theory to include negative
ions or multiply charged ions is straightforward. The main difference
from the discussion of Sec. 2.3 is that now we shall have to consider
particle orbits in more than one dimension.

3.1 ProBe CURRENT IN A PrescriBep ELectric FIELD

We now turn to the problem of sheath formation on actual probes,
which are normally not planar but cylindrical or spherical, since such
shapes do not disturb the plasma as much as a large flat surface. Particles
can now move in orbits in a central force field, and the density is no
longer a simple function of potential as it was in the one-dimensional
case. Again we have Poisson’s equation

V2V = —d4n(qn, + gom),

but now not only is the Laplacian more complicated but also n,; is a
complicated integral involving V. The solution for // must even in the
simplest case be found numerically. However, in some physical situations
the probe current can be found without knowing the exact behavior of
I’(r). In these situations the original theory of Langmuir is applicable.
In describing this theory we shall assume that the function I7(r) is
already known.

RAN

Suppose that the prescribed electric field is such that the potential
drop around a charged spherical or cylindrical probe attracting particles
of type | is concentrated in a thin layer of radius s surrounding the

Thin Sheath: Space Charge Limited Current
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