Microwave Experiment: Week 1 **AP 4018 Columbia University**

Objective

- Learn how to operate a reflex klystron
- Measure the relationship between reflector voltage, V_{ref}, and the frequency and power output from the klystron

- See online materials
- Read "Reflex-Klystron Oscillators," by E.L. Ginzton and A.E. Harrison, *Proceedings of the IRE*, **34**(3), (1946), pp. 97-113; http://doi.org/10.1109/JRPROC.1946.233883

Read Data Sheet for Reflex Klystrons 2 K 25 and 723 A/B (on line)

Fig. 50. Cross section of the 2K25 and 723 A/B.

TECHNICAL DATA of the 723 A/B

The reflex klystron type 723 A/B is specially designed for operation at 9370 Mc/s. Its frequency range is smaller than that of the 2K25; viz. 8702-9548 Mc/s.

HEATER DATA

Heating	g: indire	ct by	a.c.	or	d.c.:	para	llel	supp	oly					
Heater	voltage	•	•	•	•			•		•	•	$V_f =$	6.3 V	$\pm 8\%$
Heater	current	•	•	•				•		•	•	$I_f =$	0.44 A	

Fig. 55. Dimensional drawing; dimensions in mm.

Operating Parameters

TYPICAL OPERATING CONDITIONS: (frequency 9370 Mc/s, mode A)

D.C. resonator voltage	<i>V_{res}</i> == 300 V
D.C. repeller voltage range	$V_{rep} = -130 \text{ to } -185 \text{ V}$ ¹)
D.C. resonator current	$I_{\tau es} \equiv 25 \text{ mA}$
Half-power electronic tuning frequency range	$\Delta_f = 40 \text{ Mc/s}^2$
Power output	₩ _o <u>=</u> 30 mW

MOUNTING POSITION: any

ELECTRODE ARRANGEMENT

Fig. 57. Electrode arrangement and base connections.

LIMITING VALUES (absolute maxima)

D.C. resonator voltage	•	$V_{res} \equiv \max$.	330 V
D.C. repeller voltage neg		$-V_{rep} = \max$.	400 V
D.C. repeller voltage pos		$V_{rep} = \max$	o V
D.C. resonator current		$I_{res} = \max$	37 mA
Voltage between cathode and heater	Γ.	$V_{kf} \equiv \max$	50 V
Temperature of coaxial output line		$T = \max$.	70 °C

¹⁾ Adjusted for maximum power output at the given operating frequency.

²) Change in frequency between the two half-power points when the repeller voltage is varied above and below the point of maximum power output corresponding to the given 5 frequency.

Typical Power and Frequency vs. Repeller Voltage

(For Week #1, you are to make these measurements...)

Fig. 53. Power output W_o and frequency shift Δf as functions of the repeller voltage. 6

"Reflex-Klystron Oscillators," by E.L. Ginzton and A.E. Harrison

Fig. 1—Cross-section view of a reflex klystron.

Fig. 2-Circuit diagram for a reflex oscillator and power supply.

Fig. 3—Applegate diagram for a reflex-klystron oscillator.

"Reflex-Klystron Oscillators," by E.L. Ginzton and A.E. Harrison

Fig. 8—Equivalent circuit for a reflex-klystron oscillator.

faster

8*

Arrangement of Waveguide and Detectors

Frequency Meter/Cavity

Modulating the Repeller Voltage

Voltage Input

Modulating the Repeller Voltage

Summary: Week 1

- Learn how to operate a reflex klystron
- Measure the relationship between reflector voltage, V_{ref}, and the frequency and power output from the klystron
- Use the six data sets to examine the power output and frequency of the reflex klystron