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have 

If we express v as 

FIG. 2-2 

dt dt 

we have immediately, using Eq. (2.14), 

v = r = rer + r6e0 

so „„ that the velocity is resolved into a radial component r and an 
(or transverse) component rè. 

A second differentiation yields the acceleration : 

a = — (rer + rÒee) dt 

= re,. + rèr + rÒee + rÖee + rÒèe 

= (r- rÒ2)er + (re + 2rÒ)ee 

so that the acceleration is resolved into a radial component (r — 
an angular (or transverse) component (rÖ + 2rö). 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

angular 

(2.18) 

rè2) and 
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where a single dot above a symbol denotes the first time derivative and 
two dots denote the second time derivative. In rectangular coordinates 
the expressions for r, v, and a are 

r - xle1 + x2e2 + x3e3 = Σχ& (2·7) 
i 

v = r = Xxie i = X ^ e i (2.8) 

a = v = r = £ * A = Z § e < (2.9) 

The calculation of these quantities in rectangular coordinates is straight-
forward since the unit vectors ef are constant in time. In nonrectangular 
coordinate systems, however, the unit vectors at the position of the particle 
as it moves in space are not necessarily constant in time, and the compo-
nents of the time derivatives of r are no longer simple relations as above. 
We shall not have occasion to discuss general curvilinear coordinate 
systems here, but plane polar coordinates, spherical coordinates, and 
cylindrical coordinates are of sufficient importance to warrant a discussion 
here of velocity and acceleration in these coordinate systems.* 

In order to express v and a in plane polar coordinates, consider the 
situation in Fig. 2-2. Here, a point moves along the curve r(i) and in the 
time interval t2 — t1 = dt moves from P{1) to P{2\ The unit vectors, er 

and e0, which are orthogonal, change from ër
1] to e<2) and from ee

l) to e(
e
2\ 

The change in er is 

e<2> - β<υ = der (2.10) 

which is a vector normal to er (and, therefore, in the direction of e0). Simi-
larly, the change in ee is 

# > - # > = dee (2.11) 

which is a vector normal to ee. We may then write 

der = d0ee (2.12) 

and 

dee= -d0er (2.13) 

where the minus sign enters the second relation since de0 is directed opposite 
to er (see Fig. 2-2). Dividing each side of Eqs. (2.12) and (2.13) by dt, we 

* Refer to the figures in Appendix F for the geometry of these coordinate systems. For a 
general discussion of curvilinear coordinates, see Marion (Ma65a, Chapter 4). 
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is in fact true, the ultimate test of the vector nature of a quantity is con-
tained in its transformation properties. We shall give only a qualitative 
argument here; the complete proof is carried out in Marion (Ma65a, 
Section 2.5). 

FIG. 2-4 

Refer to Fig. 2-4; if the radius vector of a point changes from r to 
r + δτ, then the geometrical situation is correctly represented if we write 

<5r = δθ x r (2.30) 

where SQ is a quantity whose magnitude is equal to the infinitesimal 
rotation angle and which has a direction along the instantaneous axis of 
rotation. The mere fact that Eq. (2.30) correctly describes the situation 
illustrated in Fig. 2-4 is not in itself sufficient to establish that δβ is a vector. 
(We reiterate that the true test must be based on the transformation 
properties of (5Θ.) But if it can be shown that two infinitesimal rotation 
"vectors," δθλ and <5Θ2, actually commute, then the sole objection to 
representing a finite rotation by a vector will have been removed. 

Let us consider that a rotation δθί takes r into r + ôru where <5r, = 
ôQ1 x r. If this is followed by a second rotation <5Θ2 about a different axis, 
the initial radius vector for this rotation is r + δτ1. Thus, 

δτ2 = (5Θ2 x (r + ÔTi), 

and the final radius vector for ôQi followed by <5Θ2 is 

r + <$Γ12 = r + [<5Θ, x r + <5Θ2 x (r + Ór,)] 

Angular Velocity (Sec. 1.15)
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Cylindrical coordinates 

ds2 = dr2 + r2 dO2 + dz2 \ 

v2 = r2 + r2Ò2 + z2 (2.25) 

v = rer + rÔee + zez I 

2.4 Angular Velocity 

A point or a particle which is moving arbitrarily in space may always 
be considered, at a given instant, to be moving in a plane, circular path 
about a certain axis. That is, the path which a particle describes during an 
infinitesimal time interval St may be represented as an infinitesimal arc of 
a circle. The line which passes through the center of the circle and is per-
pendicular to the instantaneous direction of motion is called the instanta-
neous axis of rotation. As the particle moves in the circular path, the rate 
of change of the angular position is called the angular velocity : 

v = ft=è (2.26) 

Consider a particle that moves instantaneously in a circle of radius R 
about an axis perpendicular to the plane of motion, as in Fig. 2-3. Let the 
radius vector r of the particle be drawn from an origin located at an arbitrary 
point O on the axis of rotation. The time rate of change of the radius 
vector is the linear velocity vector of the particle, r = v, and for motion 

FIG. 2-3 
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is in fact true, the ultimate test of the vector nature of a quantity is con-
tained in its transformation properties. We shall give only a qualitative 
argument here; the complete proof is carried out in Marion (Ma65a, 
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in a circle of radius R, the magnitude of the linear velocity is given by 

dO 
v = R-- = Rœ (2.27) 

dt 

The direction of the linear velocity v is, of course, perpendicular to r and 
in the plane of the circle. 

Now, it would be very convenient if we could devise a vector representa-
tion of the angular velocity (say, co) so that all of the quantities of interest 
in the motion of the particle could be described on a common basis. We 
may define a direction for the angular velocity in the following manner. 
If the particle moves instantaneously in a plane, then the normal to that 
plane defines a precise direction in space, or, rather, two directions. We 
may elect to choose as positive, that direction which corresponds to the 
direction of advance of a right-hand screw when turned in the same sense 
as the rotation of the particle (see Fig. 2-3). We may also write the magnitude 
of the linear velocity by noting that R = r sin a. Thus, 

v = rœ sin a (2.28) 

Having defined a direction and a magnitude for the angular velocity, we 
note that if we write 

v = ω x r (2.29) 

then both of these definitions are satisfied and we have the desired vector 
representation of the angular velocity. 

We should note at this point an important distinction between finite 
and infinitesimal rotations. Whereas an infinitesimal rotation may be repre-
sented by a vector (actually, an axial vector), a, finite rotation may not be 
so represented. The impossibility of describing a finite rotation by a vector 
is a result of the fact that such rotations do not commute (see the example 
of Fig. 1-8) and therefore in general different results will be obtained 
depending on the order in which the rotations are made. To illustrate this 
statement, consider the successive application of two finite rotations, 
described by the rotation matrices λι and λ2. Let us associate the vectors 
A and B in a one-to-one manner with these rotations. The vector sum is 
C = A + B, which is equivalent to the matrix λ3 = λ2λλ. But since vector 
addition is commutative, we also have C = B + A, with λ4 = λ1λ2. We 
know, however, that matrix operations are not commutative, so that, in, 
general, λ3 Φ λ4. Hence, the vector C is not unique, and therefore wqf 
cannot associate a vector with a finite rotation. 

Now, as we shall show, infinitesimal rotations do not suffer from th/s 
defect of noncommutation. We are therefore led to expect that an infinites-
imal rotation can be represented by a vector. Although this expectation 


