Solved Problems from Ch. 1

AP E3200x
Mechanics
1-10. A particle moves in a plane elliptical orbit described by the position vector

\[\mathbf{r} = 2b \sin \omega t \mathbf{i} + b \cos \omega t \mathbf{j} \, . \]

(a) Find \(\mathbf{v} \), \(\mathbf{a} \), and the particle speed.
(b) What is the angle between \(\mathbf{v} \) and \(\mathbf{a} \) at time \(t = \pi/2\omega \)?

1-12. Let \(\mathbf{a} \), \(\mathbf{b} \), \(\mathbf{c} \) be three constant vectors drawn from the origin to the points \(A \), \(B \), \(C \). What is the distance from the origin to the plane defined by the points \(A \), \(B \), \(C \)? What is the area of the triangle \(ABC \)?

1-14. Consider the following matrices:

\[\mathbf{A} = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 3 & 1 \\ 2 & 0 & 1 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 2 \\ 1 & 1 & 3 \end{pmatrix}, \quad \mathbf{C} = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix} \]

Find the following

(a) \(|\mathbf{A} \mathbf{B}| \) (b) \(\mathbf{A} \mathbf{C} \) (c) \(\mathbf{A} \mathbf{B} \mathbf{C} \) (d) \(\mathbf{A} \mathbf{B} - \mathbf{B}' \mathbf{A}' \)

1-26. A particle moves with \(v = \text{const.} \) along the curve \(\mathbf{r} = k(1 + \cos \theta) \) (a cardiod). Find \(\mathbf{r} \cdot \mathbf{e}_r = a \cdot \mathbf{e}_r, |a|, \text{ and } \theta. \)

1-34. Evaluate the integral

\[\int \mathbf{A} \times \mathbf{A} \, dt \]

1-36. Find the value of the integral \(\int_S \mathbf{A} \cdot d\mathbf{a} \), where \(\mathbf{A} = x \mathbf{i} - y \mathbf{j} + z \mathbf{k} \) and \(S \) is the closed surface defined by the cylinder \(z^2 = x^2 + y^2 \). The top and bottom of the cylinder are at \(z = d \) and \(0 \), respectively.

1-38. Find the value of the integral \(\int_S (\nabla \times \mathbf{A}) \cdot d\mathbf{a} \) if the vector \(\mathbf{A} = y \mathbf{i} + z \mathbf{j} + x \mathbf{k} \) and \(S \) is the surface defined by the paraboloid \(z = 1 - x^2 - y^2 \), where \(z \geq 0 \).

1-40. The height of a hill in meters is given by \(z = 2x^2 - 3x^2 - 4y^2 - 18x + 28y + 12 \), where \(x \) is the distance east and \(y \) is the distance north of the origin. (a) Where is the top of the hill and how high is it? (b) How steep is the hill at \(x = y = 1 \), that is, what is the angle between a vector perpendicular to the hill and the \(x \) axis? (c) In which compass direction is the slope at \(x = y = 1 \) steepest?
Chapter 1

10. (a) \[\mathbf{v} = 2b\omega \cos \omega t \mathbf{i} - b\omega \sin \omega t \mathbf{j} \quad \text{(b) 90°} \]

\[\mathbf{a} = -\omega^2 \mathbf{r} \]

\[|\mathbf{v}| = b\omega[3 \cos^2 \omega t + 1]^\frac{1}{2} \]

12. \[h = \frac{|\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}|}{|\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a}|} \]

\[A = \frac{1}{2}|(\mathbf{b} - \mathbf{a}) \times (\mathbf{c} - \mathbf{b})| = \frac{1}{2}|(\mathbf{a} - \mathbf{c}) \times (\mathbf{b} - \mathbf{a})| \]

\[= \frac{1}{2}|(\mathbf{c} - \mathbf{b}) \times (\mathbf{a} - \mathbf{c})| \]

14. (a) -104 \hspace{1cm} (b) \[\begin{pmatrix} 9 & 7 \\ 13 & 9 \end{pmatrix} \] \hspace{1cm} (c) \[\begin{pmatrix} -5 & -5 \\ 3 & -5 \end{pmatrix} \] \hspace{1cm} (d) \[\begin{pmatrix} 0 & -3 & -4 \\ 3 & 0 & 6 \end{pmatrix} \]

26. \[\mathbf{a} \cdot \mathbf{e}_r = -\frac{3}{4} \frac{v^2}{k}; \quad |\mathbf{a}| = \frac{3}{4} \frac{v^2}{k} \sqrt{\frac{2}{1 + \cos \theta}}; \quad \dot{\theta} = \frac{v}{\sqrt{2}kr} \]

34. \[\int (\mathbf{A} \times \mathbf{A}) \, dt = (\mathbf{A} \times \mathbf{A}) + \mathbf{C}, \text{ where } \mathbf{C} \text{ is a constant vector} \]

36. \[\pi c^2 d \]

38. \[-\pi \]

40. (a) \(x = -2 \text{ m}, y = 3 \text{ m}, z_{\text{max}} = 72 \text{ m}; \) (c) SE