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The daily motion of the Moon through the sky has many unusual features that a careful observer can
discover without the help of instruments. The three different frequencies for the three degrees of
freedom have been known very accurately for 3000 years, and the geometric explanation of the Greek
astronomers was basically correct. Whereas Kepler’s laws are sufficient for describing the motion of
the planets around the Sun, even the most obvious facts about the lunar motion cannot be understood
without the gravitational attraction of both the Earth and the Sun. Newton discussed this problem at
great length, and with mixed success; it was the only testing ground for his Universal Gravitation. This
background for today’s many-body theory is discussed in some detail because all the guiding principles
for our understanding can be traced to the earliest developments of astronomy. They are the oldest
results of scientific inquiry, and they were the first ones to be confirmed by the great
physicist-mathematicians of the 18th century. By a variety of methods, Laplace was able to claim
complete agreement of celestial mechanics with the astronomical observations. Lagrange initiated a
new trend wherein the mathematical problems of mechanics could all be solved by the same uniform
process; canonical transformations eventually won the field. They were used for the first time on a
large scale by Delaunay to find the ultimate solution of the lunar problem by perturbing the solution
of the two-body Earth-Moon problem. Hill then treated the lunar trajectory as a displacement from
a periodic orbit that is an exact solution of a restricted three-body problem. Newton’s difficultly in
explaining the motion of the lunar perigee was finally resolved, and the Moon’s orbit was computed
by a new method that became the universal standard until after WW II. Poincaré opened the 20th
century with his analysis of trajectories in phase space, his insistence on investigating periodic orbits
even in ergodic systems, and his critique of perturbation theory, particularly in the case of the Moon’s
motion. Space exploration, astrophysics, and the landing of the astronauts on the Moon led to a new
flowering of celestial mechanics. Lunar theory now has to confront many new data beyond the simple
three-body problem in order to improve its accuracy below the precision of 1 arcsecond; the computer
dominates all the theoretical advances. This review is intended as a case study of the many stages that
characterize the slow development of a problem in physics from simple observations through many
forms of explanation to a high-precision fit with the data. [S0034-6861(98)00802-2]
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I. INTRODUCTION

If there be nothing new, but that which is
Hath been before, how are our brains beguiled,
Which, laboring for invention, bear amiss
The second burden of a former child!

(Shakespeare, Sonnet 59)

A. The Moon as the first object of pure science

When we try to understand a special area in physics
ourselves, or when we teach the basics of some specialty
to our students, there is no better way than to go
through the most important steps in their historical or-
der. While doing so, it would be a pity if we did not
make comparisons with the historic progression in re-
lated fields and identify the common features that help
us to establish a successful and convincing picture in any
area. The Moon’s motion around the Earth offers us the
prime example in this respect.

Although we think primarily of the planets orbiting
the Sun as the fundamental issue for the origin of mod-
ern science, it was really the Moon that provided the
Rev. Mod. Phys., Vol. 70, No. 2, April 1998
principal ideas as well as the crucial tests for our under-
standing of the universe. For simplicity’s sake I shall dis-
tinguish three stages in the development of any particu-
lar scientific endeavor. In all three of them the Moon
played the role of the indispensable guide without whom
we might not have found our way through the maze of
possibilities.

The first stage of any scientific achievement was
reached 3000 years ago in Mesopotamia when elemen-
tary observations of the Moon on the horizon were
made and recorded. The relevant numbers were then
represented by simple arithmetic formulas that lack any
insight in terms of geometric models, let alone physical
principles. And yet, most physicists are not aware of the
important characteristic frequencies in the lunar orbit
that were discovered at that time. They can be com-
pared with the masses of elementary particles, our
present-day understanding of which hardly goes beyond
their numerical values.

The second stage was initiated by the early Greek phi-
losophers, who thought of the universe as a large empty
space with the Earth floating at its center, the Sun, the
Moon, and the planets moving in their various orbits
around the center in front of the background of fixed
stars. This grand view may have been the single most
significant achievement of the human mind. Without the
Moon, visible both during the night and during the day,
it is hard to imagine how the Sun could have been con-
ceived as moving through the Zodiac just like the Moon
and the planets. The Greek mathematicians and as-
tronomers were eventually led to sophisticated geomet-
ric models that gave exact descriptions without any hint
of the underlying physics.

The third stage was reached toward the end of the
17th century with the work of Isaac Newton. His grand
opus, The Mathematical Principles of Natural Philoso-
phy, represents the first endeavor to explain observa-
tions both on Earth and in the heavens on the basis of a
few physical ‘‘laws’’ in the form of mathematical rela-
tions. The crucial test is the motion of the Moon to-
gether with several related phenomena such as the tides
and the precession of the equinoxes. This first effort at
unification can be called a success only because it was
able to solve some difficult problems such as the inter-
action of the three bodies Moon-Earth-Sun.

Modern physics undoubtedly claims to have passed
already through stages one and two, but have we
reached stage three in such areas as elementary-particle
physics or cosmology? Can we match Newton’s feat of
finding two mathematical relations between the four rel-
evant lunar and solar frequencies that were known in
antiquity to five significant decimals? The gravitational
three-body problem has provided the testing ground for
many new approaches in the three centuries since New-
ton. But we are left with the question: what are we look-
ing for in our pursuit of physics?

The Moon as well as elementary particles and cosmol-
ogy are problems whose solutions can be called quite
remote and useless in today’s world. That very quality of
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detachment from everyday life makes them prime ex-
amples of pure science, objects of curiosity without ap-
parent purpose, such as only human beings would find
interesting. In following the development in the case of
the Moon over the past three centuries we get an idea of
what is in store for us in other fields.

B. Plan of this review

The three principal coordinate systems in the sky are
described in Sec. II; they are based on the local horizon,
on the equator, and on the ecliptic. The relations be-
tween these coordinate systems are fundamental for un-
derstanding the process of observing and interpreting
the results of the observations. The various definitions of
time in astronomy are recalled, as well as the measure-
ment of linear distances in the solar system, which plays
a special role in celestial mechanics because the equa-
tions of motion scale with the distance.

Section III is devoted to the prescientific and the ear-
liest scientific achievements in the search for under-
standing of the lunar motions. The more obvious fea-
tures that are easily seen with the bare eye can then be
explained. The basic periods can be obtained from ob-
servations near the horizon, i.e., near the time of moon-
rise or moonset. The Babylonians in the last millennium
B.C. developed a purely numerical scheme for predicting
the important events in the lunar cycle. Their great
achievement was the precision measurement of the vari-
ous fundamental frequencies in the Moon’s motion.

In the last few centuries B.C., the Greeks developed a
picture of the universe that is still essentially valid in our
time. The solar system is imbedded in a large three-
dimensional vacuum, which is surrounded by the fixed
stars. The Sun, the Moon, and the five classical planets
move along rather elaborate orbits of various sizes, the
Moon being by far the closest to the Earth. The basic
physics such as the conservation of angular momentum
is hidden in these purely geometric models. The discus-
sion in Sec. IV will hardly do justice to this great ad-
vance in our understanding of the universe around us.

Some of the Greek data were refined by Islamic as-
tronomers, but even the awakening in the 15th and 16th
century, in particular the great treatise by Copernicus,
did not improve the calculation of the Moon’s motion,
as will be shown in Sec. V. Physics came into the picture
when Kepler got a chance to interpret Brahe’s data, and
Galileo had the marvelous idea of looking at the stars
with the newly invented telescope. The explosive accu-
mulation of observations without a useful theory led to
stagnation at the end of the 17th century, not unlike
high-energy physics at the end of the 20th century.

The big breakthrough came with the publication of
the Principia by Newton in 1687. The theory of the
Moon became the great test for Newton’s laws of mo-
tion and universal gravitation, as will be described in
Sec. VI. His truly awesome (and generally quite unap-
preciated) results in this area are well worth explaining
in detail before getting into the inevitable technical re-
Rev. Mod. Phys., Vol. 70, No. 2, April 1998
finements that are needed to exploit fully what Newton
had only tentatively suggested.

The great mathematicians of the 18th century suc-
ceeded in clearing up Newton’s difficulties with calculat-
ing the motion of the lunar perigee. Section VII tries to
give an idea of their straightforward, but somewhat
clumsy, methods. Laplace was able to carry out all the
necessary calculations, but his grand unification of all
celestial mechanics came at a high price; physics was
again in danger of getting lost.

The next three sections are more technical in content.
They try to provide a glimpse of the general methods
that were proposed in order to deal with the difficult
three-body problem Moon-Earth-Sun. Lagrange’s idea
of ‘‘varying the constants’’ is discussed in Sec. VIII; a
few successful examples of his method still retain some
intuitive appeal. Section IX describes the origin of the
canonical formalism and its first use on a grand scale by
Delaunay to find the lunar trajectory. Poincaré showed
the ultimate futility of any expansion in the critical pa-
rameter that caused Newton so much grief. Toward the
end of the 19th century Hill approached lunar theory by
starting with a periodic orbit of a perturbed dynamical
system. The many advantages of this method are dis-
cussed in Sec. X, including the complete ephemeris of
Brown and Eckert that was basic for the Apollo pro-
gram and the implementation on a modern computer.

A somewhat haphazard survey of other developments
in the 20th century, as well as some older but timely
problems related to the Moon, are brought up in Sec.
XI. Modern technology in connection with the space
program is responsible for many improvements both in
observing and in understanding the dynamic system
Moon-Earth-Sun. High-speed computers have moved
the emphasis away from the general theory of the three-
body problem toward a better look at the detailed fea-
tures in many of its special cases. We have come full-
circle back to watching elementary phenomena, but they
present themselves on the screen of a monitor rather
than as the Sun or the Moon on the local horizon.

II. COORDINATES IN THE SKY

A. The geometry of the solar system

Any account of the motions in the Moon-Earth-Sun
system has to start by defining the basic coordinates.
Our cursory discussion describes the technical aspect of
the Greek universe and still represents the fundamental
approach to running a modern observatory. The geocen-
tric viewpoint is unavoidable as long as we are depen-
dent on telescopes that are fixed on the ground or are
attached to a satellite.

For more details the reader is encouraged to take a
look at the Explanatory Supplement to the Astronomical
Ephemeris, a 500-page volume that is published by the
US Naval Observatory and the Royal Greenwich Obser-
vatory. Among the many introductory texts on spherical
astronomy are the classics by Smart (1931) and Woolard
and Clemence (1966). The reader may also find some
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useful explanations in more elementary textbooks like
those of Motz and Duveen (1977) and Roy (1978).

Three conceivable places for the observer can serve as
the origin of a coordinate-system: (i) topocentric, from
the place of the observatory on the surface of the Earth,
(ii) geocentric, from the center of the Earth, or (iii) he-
liocentric, from the center of the solar system. Each co-
ordinate system on the celestial sphere requires for its
definition a plane or, equivalently, a direction perpen-
dicular to the plane. A full polar coordinate system is
obtained by adding the distance from the observer.

The whole machinery of these reference systems was
the invention of the Greeks as part of their purely geo-
metric view of the universe; it is a crucial preliminary
step toward our physical picture of the world. The con-
struction is completed by defining a full-fledged Carte-
sian coordinate system, which is centered on one of the
three possible locations for the observer. The ordinary
formulas for the transformations from one Cartesian
system to another can be used, rather than the less fa-
miliar formulas from spherical trigonometry.

B. Azimuth and altitude—declination and hour angle

The local plumbline fixes the point Z overhead, the
(local) zenith, on the imaginary spherical surface around
us. The horizon is composed of all the points with a
zenith distance equal to 90°. The center P for the appar-
ent daily rotation is the north celestial pole; its distance
from the zenith is the colatitude f̄590°2f where f is
the geographical latitude for the place of observation. A
great circle through P and Z defines the north point N
of the horizon, as well as the other three cardinal points
on the horizon, east (E), south (S), west (W).

The location of an object X is defined by moving west
from the south point on the horizon through the azimuth
c, and then straight up through the altitude z, counted
positive toward the zenith. The altitude z of an object
determines its visibility at the location of the observer.
More importantly, the refraction of the light rays in the
Earth’s atmosphere is responsible for increasing the ob-
served value of the altitude by as much as 308 when the
object is near the horizon. The refraction was not under-
stood by the Greeks; nor even by Tycho Brahe, who
gives different values for the Sun and for the Moon,
although the values themselves are quite good.

The second spherical coordinate system has the main
direction pointing toward the north celestial pole P .
Any half of a great circle from the north pole to the
south pole is called a meridian. The directions at right
angle to the north pole form the celestial equator, which
intersects the horizon in the two cardinal points east and
west. Each star X has its own meridian. The declination
d is the angular distance of X from the equator, as mea-
sured along its meridian, positive to the north and nega-
tive to the south of the equator. The meridian through
the zenith Z and S is the observer’s meridian.

When the meridian of X coincides with the observer’s
meridian, the star is said to transit or culminate. At that
moment the altitude of X is greatest, and the correction
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for refraction is least. The star’s position is defined by
the angle between its meridian and the observer’s me-
ridian, called the hour angle x; it is measured from the
observer’s meridian toward west. The hour angle of any
star increases from 0 at its transit to exactly 360°524
hours at its next transit, after one sidereal day.

The Sun goes around the celestial sphere once in one
year, moving in a direction opposite to the daily motion
of the fixed stars. It makes on the average only 365.25
transits in one year, whereas every fixed star makes
366.25 transits. Therefore, the sidereal day is shorter by
1/366.25, or a little less than 4 minutes, than the mean
solar day.

The horizon system with the x ,y ,z axes pointing
south, east, and toward the zenith, can be transformed
into the equatorial system with the x8,y8,z8 axes point-
ing south on the equator, east on the horizon, and to-
ward the north pole, by a rotation around the common y
axis through the colatitude f̄590°2f . The position of a
star in the horizon system is given by the coordinates
(x ,y ,z)5(cos z cos c,2cos z sin c,sin z), whereas in the
equatorial system (x8,y8,z8)5(cos d cos x,
2cos d sin x,sin d). The transformation is given by

S x8
y8
z8
D 5S cos f̄ 0 1sin f̄

0 1 0

2sin f̄ 0 cos f̄
D S x

y
z
D . (1)

A star is said to rise when its altitude becomes positive
by passing the eastern half of the horizon, and to set as it
dips into the western half of the horizon. The azimuth
c0 of a star with declination d at the time of its setting,
i.e., when its altitude z50, follows from

sin~c0290° !5
sin~d!

cos~f!
. (2)

At the latitude of New York City f540°, and for d
523.5° which is the declination of the Sun at the sum-
mer solstice, we find that the Sun sets c0290°531°228
on the horizon toward north from the point west.

The upper limit for the declination of the Moon has a
cycle of about 18 years, during which it varies from
18°108 to 28°508. The corresponding moonsets, there-
fore, which are easily observed with the naked eye, vary
from 24° north from the point west all the way to 39° at
the latitude of New York.

C. Right ascension—longitude and latitude

The difference in hour angles between two fixed stars
remains constant. Any feature Q on the celestial sphere
may serve as a reference; its hour angle is called the
sidereal time t. The right ascension a of any star X is
then defined by

a5t2x . (3)

The right ascension a increases toward the East as mea-
sured from Q , opposite the apparent motion of the ce-
lestial sphere.
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The apparent path of the Sun through the sky with
respect to the fixed stars is a great circle, which is called
the ecliptic, with the pole K in the northern hemisphere;
it changes only very slowly with time. An object X in the
sky can be found by starting from the reference point Q
and going east along the ecliptic through the longitude l,
and then toward K through the latitude b.

This reference point Q is generally chosen to be the
vernal equinox, i.e., the place where the ecliptic inter-
sects the celestial equator, and where the Sun in its ap-
parent motion around the ecliptic crosses over into the
northern side of the equator; it is also called the First
Point in Aries (the constellation of the Ram). This point
has a slow, fairly involved, retrograde motion with re-
spect to the fixed stars, i.e., it moves in the direction
opposite to the motion of virtually all bodies in the solar
system. Its longitude with respect to a given fixed star
decreases by some 509 per year.

The transformation from the equatorial to the ecliptic
system is made with the common x axis pointing toward
Q ,

S cos b cos l
cos b sin l

sin b
D 5S 1 0 0

0 cos «0 sin «0

0 2sin «0 cos «0

D
3S cos d cos a

cos d sin a
sin d

D (4)

where «0 is the angle between the equator and the eclip-
tic.

Although many instruments have been constructed
since antiquity to measure directly the ecliptic coordi-
nates (see the detailed description of Brahe’s instru-
ments by Raeder et al.), they are not very exact. Most of
the precision measurements of the lunar position are
made by timing the Moon’s transit day after day by mu-
ral quadrants, meridian circles, and other transit instru-
ments, and then transforming to the ecliptic coordinates
with the help of the above formulas.

D. The vernal equinox

During antiquity the vernal equinox was in the con-
stellation of Aries, and spring was associated with the
Sun’s being located at the beginning of the Ram. But
since then, the vernal equinox has moved into the ‘‘pre-
ceding’’ constellation of Pisces, the Fishes. The astro-
logical literature, however, still associates the constella-
tions in the Zodiac with the twelve periods of the solar
cycle as they were in antiquity. Therefore, gentle reader,
beware, although you might think of yourself as a Lion,
the Sun was in the sign of the Crab when you were born!

The ecliptic is inclined toward the celestial equator by
the obliquity of the ecliptic «0 (really the inclination of
the Earth’s axis with respect to the ecliptic), about
23°308. The exact motion of the Earth’s axis has a num-
ber of periodic terms, collectively called nutation, that
are of the order of 99 (see Fedorov, Smith, and Bender,
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1980). The ephemerides correct all the geocentric data
such as the right ascensions and declinations for the
‘‘mean equator’’ and the ‘‘mean equinox of date.’’ The
adjective ‘‘mean’’ always applies to changes in some pa-
rameter after its periodic variations have been elimi-
nated.

E. All kinds of corrections

For objects in the solar system, a correction is neces-
sary to refer any observations to the center of the Earth,
rather than to some location on its surface; the data have
to be reduced from the topocentric to the geocentric.
This correction for the parallax is very large for the
Moon, almost as much as 1°, whereas for all other ob-
jects in the solar system it is of the order of 109 at most.
It changes the apparent position with respect to the fixed
stars depending on the distance from the zenith. To
make things worse, Zach (1814) showed that the local
geology causes the local plumbline to differ significantly
from the averaged normal. The shift from topocentric to
geocentric coordinates is made by formulas such as Eq.
(1) that include the radial distances.

The objects in the solar system have generally a finite
size on the order of seconds of arc (and therefore do not
twinkle!), except for the Moon and the Sun, whose ap-
parent sizes are very nearly equal and close to 308 on the
average. The Moon’s boundary is clearly jagged on the
order of seconds of arc because of its mountains; this
outline of the lunar shape changes because of the
Moon’s residual rotation with respect to the Earth.

The bare eye is able to work down to minutes of arc,
and requires correction only for refraction and the par-
allax of the Moon. Isolated observations with a moder-
ate telescope can distinguish features down to seconds
of arc that can be seen in good photography. Positions
on the celestial sphere to a second of arc, however, re-
quire not necessarily large telescopes but very stable and
precise mountings so that many data can be taken over
extended intervals of time.

F. The measurement of time

The time interval between the transits of the Sun var-
ies considerably throughout the year. The mean solar
day is defined with the help of a fictitious body called the
mean sun (MS), which moves on the equator with uni-
form speed. The difference of the right ascension for the
mean sun minus the right ascension for the real Sun is
called the equation of time, aMS2aS . This has to be
added to the Sun’s right ascension aS to make it increase
uniformly.

The hour angle for the mean sun at the Greenwich
Observatory is called the Greenwich mean astronomical
time. Universal Time UT is Greenwich mean astronomi-
cal time plus 12 hours, so that the transit of the mean
sun occurs at 12 hours, and mean midnight at 0 hours.
UT is the basis for all the local standard times; they
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differ from UT simply by adding or subtracting a fixed
(not necessarily integer, as in the case of India) number
of hours (Howse, 1980).

The difference between the apparent motions of the
real and the mean sun is shown on any good sundial.
The pointer’s shadow at the time of the mean local noon
is the analemma; it has the shape of an unsymmetric and
slanted figure 8 along the north-south direction.

G. The Earth’s rotation

The rate of the Earth’s rotation decreases because the
tides in the oceans act like a brake; the mean solar day
increases by roughly 1 millisecond each century. From
the vast literature on this subject let me mention the
classic study by Newcomb (1878 and 1912) and its mod-
ern versions by Marsden and Cameron (1966), Martin
(1969), McCarthy and Pilkington (1979), and Babcock
and Wilkins (1988). The accumulated lengthening of the
day adds up to more than two hours over 20 centuries,
or equivalently, the Earth has fallen behind by about 30°
in the rotation around its own axis. The reports of
eclipses can be used to determine the history of the
Earth’s rotation. A very detailed account of this argu-
ment is found in the books of Robert R. Newton (1976,
1979).

The real trouble with the Earth’s rotation is that it
decreases sometimes in fits, and occasionally even
speeds up again. It was decided, therefore, in the 1950s
to use the Earth’s orbit around the Sun as the base for
the reckoning of time, and to speak about Ephemeris
Time (ET). The difference between the two times, Uni-
versal and Ephemeris, is minute. Ephemeris Time has
already been superseded by Atomic Time (AT), which is
based on atomic clocks, i.e., it is completely independent
of the motions in the solar system.

H. The measurement of the solar parallax

For a long time, all measurements of the linear dis-
tance between any two objects could be made in only
one of two ways: either by directly applying a measuring
rod or by triangulation from a base that was short
enough to be measured directly with a measuring rod. In
this manner Eratosthenes of Cyrene in the early third
century B.C. obtained a fair value for the circumference
of the Earth. Since the Moon has a large parallax, i.e.,
the apparent radius of the Earth as seen from the Moon
is about 1°, the Greeks concluded correctly that the
Moon’s distance from the Earth is about 60 Earth radii.

A short treatise by Aristarchus of Samos, also from
the early third century B.C., has survived, ‘‘On the Sizes
and the Distances of the Sun and the Moon,’’ and a
translation can be found in Heath (1913). It proposes to
determine the exact moment of half moon simply by
looking for the time when the lighted portion of the
Moon is exactly a half circle. Aristarchus concludes that
the ratio of the Sun’s distance to the Moon’s distance is
about 20 (the correct figure is close to 400); in spite of
Rev. Mod. Phys., Vol. 70, No. 2, April 1998
many other efforts to find a better figure, this value was
essentially accepted even by Kepler and his contempo-
raries.

The relative distances for all the planets from the Sun
were quite correctly known ever since antiquity. The ab-
solute distances, however, were only obtained at the end
of the 17th century by a concerted effort to measure
various parallaxes in the solar system, mostly by observ-
ing the transits of Mercury and Venus across the face of
the Sun from different locations on the Earth. Neverthe-
less, even Newton and his immediate successors did not
have good figures for the solar parallax, and they all
used widely different values at different times. That did
not impair Newton’s theory of universal gravitation, and
its application to the solar system, all because of scaling
invariance!

I. Scaling in the solar system

Newton derived the complete form of Kepler’s third
law for the Sun and an isolated planet which attract each
other with a force that varies as the inverse square of
their distance. In modern notation, let n be the angular
frequency (52p divided by the period of the planet’s
orbit), a the semi-major axis of the planet’s orbit, G0 the
gravitational constant (in the appropriate units), and M
and m the masses of the Sun and of the planet; then

n3a35G0~M1m !. (5)

Let us now write the equations of motion for an arbi-
trarily complicated system of mass points that interact
only through the gravitational accelerations between
them; each mass m occurs only in the product G0 m. If
any solution of these equations has been found, i.e., an
explicit expression for each coordinate as a function of
time that satisfies the equations of motion, then another
solution is obtained by multiplying all the distances with
an arbitrary factor k, provided all the products G0 m are
changed into k3 G0 m. If we stick with the same units of
time, length, and mass, so that the gravitational constant
G0 keeps the same numerical value, then we effectively
assume that each mass has been increased by the factor
k3.

This scaling preserves the average density of each
planet and the Sun; the actual size of a star depends on
the interaction of the gravitational forces with forces of
a completely different nature. No other forces were
known in Newton’s time; only rough assumptions could
be made, such as the incompressibility of a fluid or the
equation of state of an ideal gas. A good value for the
solar parallax was secured after the transit of Venus in
1769, and thus the value of the product G0 M for the
Sun was finally known, but not the value of the mass
itself for the Sun, nor for any body in the solar system.

The gravitational constant G0 was finally measured by
Henry Cavendish (1798) with a torsion balance in a fa-
mous experiment that measured the gravitational force
between two balls made of lead. With G0 known, the
average density of the Earth can be obtained; that was
the intention of Cavendish, whose paper is entitled ‘‘Ex-
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periments to determine the density of the Earth.’’ Re-
markably, the correct result had been guessed by New-
ton as about five times the density of water.

Because of scaling invariance, inaccurate values of G0
affect neither the astronomical observations nor the
theory of the motions in the solar system. The observa-
tions yield precise values for the mass ratios, and that is
all the theory requires. Many of the problems with dis-
tances in the solar system were finally solved in the most
recent times, particularly in the case of the Moon. On
the one hand, space probes circling the Moon in a very
low orbit produce a good value for its relative mass di-
rectly from Kepler’s third law. On the other hand, the
reflectors left on the surface of the Moon by the astro-
nauts provide the opportunity to measure directly the
distance of the Moon from the Earth through the reflec-
tion of laser pulses, giving rise to contemporary eph-
emerides of unprecedented accuracy. Thus distances
have finally replaced angles as the fundamental variables
in the description of the Moon’s motion.

III. SCIENCE WITHOUT INSTRUMENTS

A. The lunar cycle and prescientific observations

Humanity must have noticed for a long time the
Moon’s fundamental cycle of about 30 days. Its risings
and settings follow a similar pattern in the course of one
month to that of the sunrises and sunsets in the course of
one year, but their spread on the horizon varies greatly.
It reached a minimum in 1997 of only 624° at New
York’s latitude, much smaller than the Sun’s 631°; it
will increase over the coming nine years and then reach
a maximum of 639° in 2006.

The Moon moves about 13° in one day with respect to
the fixed stars. When the dark edge of the Moon moves
over a star, the apparent width of the light source can be
measured very simply by the time interval for its gradual
disappearance. (In this manner the apparent width of
certain light sources with large redshifts was first estab-
lished; it was found to be ‘‘quasistellar,’’ thereby justify-
ing their name as quasars.)

Other cycles were known in many early cultures.
When Sirius first shows up in the dawn’s early light at
the beginning of August, the Nile is likely to start flood-
ing two weeks later. Venus changes back and forth be-
tween evening star and morning star five times in eight
years. Jupiter makes a full swing around the Zodiac in
about 12 years, more exactly 7 times in 83 years. The
cyclic nature of these phenomena probably had a pro-
found effect on religion and philosophy; they were re-
corded in the early writings of many civilizations. But
they cannot be called science as yet because no effort
was made to pin down the exact timings and, in particu-
lar, the fluctuations around the basic repetitions.

B. Babylonian astronomy

The people living in Mesopotamia, the country in the
Middle East between the rivers Tigris and Euphrates,
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our present-day Iraq, were the first humans to start truly
scientific investigations, some time after 1000 B.C. The
remaining record is substantial but fragmentary: broken
pieces of clay tablets that were found among the ruins of
the ancient cities. They were brought to Europe and
America by the thousands during the 19th century, not
necessarily by archaeologists, and are now kept in places
like the British Museum, Columbia, and Yale Univer-
sity.

These clay tablets are densely covered on both sides
with letters and numbers that were inscribed with a
chisel before the firing of the clay. The interpretation of
this ‘‘cuneiform’’ writing took many decades of patient
effort and is one of the miracles of archaeology. Several
hundred tablets are devoted to astronomical pursuits;
the oldest of them are from as far back as the 7th cen-
tury B.C., the time when the city of Babylon rose to the
leadership of the Middle East; the most recent are from
the 1st century B.C., three centuries after the Greeks un-
der Alexander the Great had conquered that whole part
of the world and Babylon had fallen into ruins.

There are extensive diaries covering six to seven
months on one tablet reporting the state of the sky from
day to day. The data on the Moon include first and last
visibility, the stars it passed close by, and the time dif-
ferences between rising and setting for both the Sun and
the Moon around the time of the full moon. These last
data are directly related to the apparent speed of the
Moon, and bring out one of the basic periods in the
lunar motion. Since this kind of analysis is generally rec-
ognized as the very first scientific activity of humanity, it
is worth describing in more detail.

The sources from this era were finally deciphered at
the end of the 19th century by a small group of German
Jesuit priests. But the texts are difficult to understand,
and the number of experts in this area since then is very
small. Neugebauer (1975, 1983) and van der Waerden
(1974, 1978) will provide the reader with an introduction
to the available literature. As examples of the patient
work required in this field and related to the Moon, let
me mention Aaboe (1968, 1969, 1971, 1980), Sachs
(1974), and Brack-Bernsen (1990, 1993).

C. The precise timing of the full moons

Let us call r , t , and s the times when the Moon rises,
transits, and sets; and let us also call r8, t8, and s8 the
corresponding times for the Sun. According to a time-
honored custom in lunar theory: if z designates any
quantity for the Moon, then z8 designates the similar
quantity for the Sun.

The differences s82r and r82s are positive before
the full moon, whereas the differences r2s8 and s2r8
are positive after the full Moon. They are less than one
hour around the time of the full moon and can easily be
measured with rather primitive water clocks. They were
consistently recorded in the diaries, stated in the Baby-
lonian units of time-degree51/360 of a day 5about 4
minutes, and sometimes even further divided into six
parts. It is not known whether the recorded times were
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for first visibility and last appearance on the horizon, or
last and first contact with the horizon. The positions of
the Moon and the Sun on the horizon are hardly ever
directly opposite each other.

Since the differences s82r and r82s change sign in
the interval of 24 hours, the time of their vanishing can
be calculated by assuming their linear decrease. More-
over, the total change of each time difference measures
the speed of the Moon relative to the Sun at the time of
the opposition.

There is no evidence that the Babylonians had any
geometric picture of the events in the sky. But many clay
tablets with long and elaborate tables of numbers were
found; they are undoubtedly the results of sophisticated
numerical models for the lunar and solar cycles, espe-
cially of the events near a full moon.

D. The Metonic cycle

Most experts believe that the Babylonians found their
procedures for reducing the data simply by staring long
enough at long rows of numbers. These data can be gen-
erated artificially on the computer nowadays, and one
can try to imitate research as it was done by the Baby-
lonians. As a simple example, the reader could look at
Goldstine’s ‘‘New and Full Moons from 1001 B.C. to A.D.
1651,’’ published in 1973.

A 19-year period is found immediately that does ex-
tremely well. It manages to predict the full moons con-
sistently within two days; there are 235 lunar cycles dur-
ing this time so that the average lunar cycle lasts 19
times 365.25 divided by 235529.53085 mean solar days
compared to the modern value of 29.53059 days.

The 19-year cycle became the base for the prevailing
calendars in the Middle East; it is generally called the
Metonic cycle because it was instituted in Athens as the
basis for the Greek calendar in 432 B.C. by the astrono-
mer Meton. The Jewish calendar has a cycle of 19 years
with 12 short years of 12 months and 7 long years of 13
months; holidays can therefore be defined with respect
to the nearest new moon.

The Christian calendar pays only lip service to the
moon with a highly arbitrary division of the year into 12
months whose lengths vary from 28 to 31 days. Never-
theless the 19-year cycle remained alive in Christianity,
as can be seen in one of the famous ‘‘Books of Hours’’
from France around 1400 (Zwadlo, 1994) in which the
decorative calendar carries symbols to calculate the lu-
nar cycle for any time in the future. The Islamic calendar
is based on the opposite decision, i.e., to define the year
as 12 lunar cycles, so that 19 years are short of 7 full
moons. Therefore the Islamic year-count, which started
in 1622, is ticking at a faster rate than the Jewish and
Christian counts.

E. The Saros cycle

A period of 223 lunations (new moons) emerges from
watching both the spread of the moonsets on the hori-
zon and the speed of the Moon near the full moons.
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Since 235 lunations make 19 years within two hours, the
223 lunations constitute 18 years and 11 days. There are
exactly 242 swings on the horizon, while the lunar speed
has completed quite exactly 239 cycles. At the same time
the Moon has completed exactly 241 trips around the
Zodiac.

This new period of 223 lunations in 18 years and 11
days is called the Saros period; it can be recognized very
clearly in the sequence of eclipses. The Babylonians
kept a careful record especially of the lunar eclipses
since they can be observed from many places and are
easier to spot. Although the solar eclipses are as fre-
quent, they are harder to notice if they are partial, and
total solar eclipses are very rare in any one location.
Ptolemy uses three consecutive lunar eclipses from a
Babylonian record of the 8th century B.C. in order to
compute the parameters for the lunar motions. The
Babylonians were not able to make eclipse predictions,
but they issued warnings for the eclipses to occur at cer-
tain times of the year.

There are many computed lists of lunar and solar
eclipses in historical times; the best known and for many
purposes quite sufficient are those by von Oppolzer
(1887) and Meeus, Grosjean, and Vanderleen (1966),
both of them with maps to show the strip of totality in
the solar eclipses. The physical significance of the near-
periodicities in the Saros cycle have been discussed only
very recently by Perozzi, Roy, Stevens, and Valsecchi
(1991, 1993).

As if this coincidence of the four periods in the Moon-
Earth-Sun system in such a short time span were not
enough, the Earth rotates exactly 6585.321 times around
its own axis in 223 synodic months. If we wait for three
Saros cycles, the Earth will have rotated almost exactly
back to its previous orientation, and the eclipse will be
seen again from the same place at the same time of the
day.

A pair of solar eclipses three Saros cycles apart are of
special interest to the author, since he was able to watch
the second, whereas the first took place while he was still
waiting to be born. Indeed, the meeting of the Dynami-
cal Astronomy Division of the American Astronomical
Society (where the author reported his work comparing
the lunar calculations of Eckert and Bellesheim with
earlier work) was timed to take place at Stanford Uni-
versity at the end of February 1979 so that the partici-
pants could repair to Oregon to watch the total eclipse
of the Sun on the morning of February 26. Its earlier
version had been visible in northern Manhattan and
Westchester County in the morning of January 24, 1925.
It was the first time that the most recent lunar theory of
G. W. Hill and E. W. Brown was used for the prediction.
I shall say more of this event in Sec. XI.A.

The Babylonians came tantalizingly near a good
theory for their observations. As an example, they had
divided the year into two unequal intervals, each
roughly one half-year; the Sun was moving at constant
speed in each of them and the total ground covered was
equal to 360°; the slow speed was given to the interval
covering spring and summer, whereas the high speed
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was given to the fall-winter interval. A smooth sinu-
soidal curve was approximated by a step function, but
the geometric origins, let alone the physics, were never
suspected.

IV. THE GOLDEN AGE OF GREEK ASTRONOMY

A. The historical context

To set the stage for this last (but not least) creation of
the Greek miracle, one has to be reminded of the time
frame in which astronomy came to full flower. After the
defeat of the Persians in 479 B.C. under the leadership of
Athens and Sparta, the Athenian democracy experi-
enced an economic and cultural explosion that lasted for
about 50 years. In 431 B.C., a motley collection of Greek
city-states started to grind down the military power of
Athens in the Peloponesian war. It ended in 404 B.C.
with Athens accepting the terms dictated by Sparta.

The main achievements of this delta function in space
and time can still be admired. Scientific astronomy got
its start in 432 B.C. when Meton introduced the 19-year
cycle into the Athenian calendar. He presumably mea-
sured the exact date of this solstice; historians debate
whether he knew about the 19-year cycle from the Baby-
lonians or had found it independently.

Greek science in general got its momentum from phi-
losophy in the fourth century B.C. Some of the basic
ideas in astronomy seem to have come from Plato and
Aristotle, as well as from their students and followers.
Meanwhile, Greece had been forcibly unified under
King Philip of Macedonia, and his son, Alexander the
Great, conquered all of the present-day Middle East in-
cluding Central Asia and Pakistan. Only then do we en-
counter the great mathematicians, Euclid and Apollo-
nius, master of the conic sections, as well as Archimedes,
in the third century B.C.

Two elementary treatises, ‘‘On the moving sphere’’
and ‘‘On risings and settings,’’ by Autolycus survive
from this time. They show that the spherical image of
the sky, with its great circles, its daily rotation, and the
path of the Sun along the ecliptic was generally ac-
cepted; the Greeks had gone way past the Babylonians
in finding the geometric underpinnings of astronomy.

Shortly thereafter appeared the paper of Aristarchus
of Samos, ‘‘the ancient Copernicus’’ in the words of his
translator, Sir Thomas Heath (1913), ‘‘On the Sizes and
Distances of the Sun and the Moon’’ (see Sec. II.H). The
heliocentric cosmology of Aristarchus was first men-
tioned by Archimedes in his ‘‘Sand Reckoner,’’ where
he tried to estimate the volume and content of the uni-
verse (Heath, 1897; see also Dijksterhuis, 1987). As-
tronomy was bound to take off at this juncture!

And yet, we have to wait one more century for Hip-
parchus in the middle of the second century B.C., before
we get a complete view of astronomy in the modern
sense. Unfortunately, only two of his minor works have
survived, so that our knowledge of his great accomplish-
ments comes from Ptolemy’s account, another three
centuries later, i.e., from the second century A.D.
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Hipparchus made the first catalog of about one thou-
sand stars, giving their longitude and latitude and esti-
mating their brightness on a scale from one to six which
is still in use, although greatly refined. He described the
orbits of the two ‘‘luminaries,’’ Sun and Moon, and the
five classical planets, in terms of epicycles, and deter-
mined the relevant parameters. He devised a method for
predicting the occurrence of solar and lunar eclipses,
and he discovered the precession of the equinoxes.

B. The impact on modern science

Greek astronomy managed somehow to grow from
the prescientific stage and, with the help of some input
from the Babylonian accomplishments, ended up pro-
posing the first complete and scientifically viable picture
of the solar system. By the time the Romans took con-
trol of the Eastern Mediterranean because the Greeks
had been fighting one another for three centuries, as-
tronomy had solid foundations as a science in the mod-
ern sense. The idea of first observing and measuring the
phenomena in the sky and then predicting future events
on the basis of a mathematical model became the goal of
all the other sciences that are concerned with the outside
world. The description of the solar system has become
the basic example of a valid scientific picture. Our intu-
ition and our understanding are still solidly based on the
ideas from antiquity.

Astronomy in antiquity had nothing to do with com-
plicated structures of crystalline spheres that moved the
solar system around the Earth. The only extant, com-
plete account of ancient Greek astronomy, the Almagest
of Ptolemy, is a monograph in the modern sense: the
various coordinate systems in the sky are first described
exactly as we did in the second chapter, along with the
relevant mathematics; the theory of the solar motion
and of the much more involved lunar motion is ex-
plained on purely geometric grounds, and the prediction
of the lunar phases and of the two kinds of eclipses is
discussed; then follows the study of the fixed stars and
the precession of the equinoxes; finally, the apparent
motions of the two inferior planets (Mercury, Venus)
and of the three superior planets (Mars, Jupiter, Saturn)
are treated in the second half of the monograph on the
basis of the geocentric universe. An English translation
by Taliaferro was published in 1938 as part of Volume
16 of Great Books of the Western World; book-length
analyses were undertaken by Pedersen (1974) and Neu-
gebauer (1975).

The history of ancient Greek astronomy has been
studied in great detail, and there are many comprehen-
sive accounts for the interested and educated layperson
in the principal European languages. The astronomers
in the 16th and 17th centuries had studied their Greek,
as well as their medieval Islamic and Jewish, ancestors
with great care, and some of these works were available
in their original as well as in Latin translation. Whereas
there is at present a whole industry concerned with the
advances during the 16th and 17th centuries, from which
we have an abundance of sources quite easily accessible,
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very few general titles covering Greek and medieval as-
tronomy have been added in this century. Here is an
incomplete, but representative, list: Berry (1898),
Dreyer (1906), Heath (1913), Dicks (1970), Pedersen
and Pihl (1974), Neugebauer (1975).

C. The eccentric motion of the Sun

The Greek astronomers invented different geometric
constructions to represent the main results of their ob-
servations. We shall look at four examples of the most
important models: (i) the eccentric circle for the Sun
around the Earth in this section, (ii) the epicycle for the
Moon around the Earth in the next section, (iii) the
equant for the outer planets in Sec. IV.E, and (iv) the
evection for the three bodies, Moon, Earth, and Sun in
Sec. V.D. The motion always takes place in the ecliptic,
i.e., in a fixed plane, and one special feature in the ob-
served motion is accounted for. The purpose of this ex-
ercise is to demonstrate the increasing complexity of
these motions and, with the benefit of hindsight, to
watch the struggle with a principle of modern mechan-
ics, the conservation of angular momentum.

First, we deal with the slow apparent motion of the
Sun in spring and summer, in contrast to its fast motion
in fall and winter. The Sun moves with uniform speed on
a circle of radius a8 whose center is at some distance
«8a8 from the Earth. The two parameters in this model
are «8 and the direction of the aphelion (largest distance
from Earth), which lies in the direction of the center.
They were determined by Hipparchus on the basis of
two time intervals, from the vernal equinox to the sum-
mer solstice and from the summer solstice to the autum-
nal equinox. Hipparchus found 1/24 and 65°148, in fair
agreement with modern values.

If the eccenter model for the Sun’s motion is taken at
face value, the eccentricity «851/24 would indicate that
the Sun’s distance from the Earth varies by this amount.
The total intensity of the Sun’s light would vary by
62«8561/12 These conclusions from the eccenter
model for the Sun were not appreciated until Kepler
examined the physical consequences of the antique
models.

D. The epicycle model of the Moon

This construction is best described if Cartesian coor-
dinates (x ,y) are used in the ecliptic, and they are com-
bined into one complex number u ,

u5x1iy5aeil̄~11«e2il !5aeil̄1«aei~l2l !, (6)

where we have now two angles, the mean longitude l̄
and the mean anomaly l . Here the word anomaly refers
to the angle from the apogee to the Moon as seen from
the Earth, whereas the longitude is reckoned from the
reference point Q ; again the adjective mean designates
these angles after the elimination of the periodic terms
(see Sec. II.D). Each ‘‘mean’’ angle increases linearly
with time at its own rate, the mean longitude covering
Rev. Mod. Phys., Vol. 70, No. 2, April 1998
2p in one sidereal month and the mean anomaly cover-
ing 2p in one anomalistic month, from one apogee to the
next. The difference l̄2l covers 2p in about nine years.

The first term describes a uniform motion on a large
circle around the origin, the deferent, while the second
term describes the motion around a small circle that
rides on the first one, the epicycle. Notice that this mo-
tion reduces to the eccentric motion of the preceding
section when the two angles increase with time at the
same rate. The second term on the right then reduces to
a translation by the constant «a .

The epicycle construction can also be applied to the
motion of the Sun around the Earth. The two angles
may not move at the same speed for two reasons: (i) if
the solar orbit remains stable with respect to the fixed
stars, but the coordinates are fixed to the vernal equinox
Q , the Sun then seems to move an additional 509 each
year before it gets to the aphelion; (ii) the aphelion ac-
tually moves forward very slowly with respect to the
fixed stars; this motion of 129 per year was discovered by
the Islamic astronomers in the early Middle Ages. The
aphelion then moves away from the equinox at 629 per
year, and it passed the summer solstice already in A.D.
1250 (see Sec. II.D).

E. The equant model for the outer planets

Both the eccenter and the epicycle motions explain
the motion in longitude, but they suffer from a basic flaw
that was already noticed at the end of Sec. IV.C: the
angular speed and the distance from the Earth vary by
the same amount. Ptolemy became aware of this diffi-
culty when he tried the eccenter model for the outer
planets, and his remedy turns out to be one of the most
ingenious contributions to astronomy.

As the outer planets are watched from the Earth, they
move in the forward (Eastern) direction along the eclip-
tic most of the time, but at regular intervals they reverse
their course and go in the Western direction for awhile.
The midpoint of this reversal is called the opposition,
when the outer planet culminates exactly at midnight,
i.e., the planet, the Earth, and the Sun lie on one straight
line, with the Earth in the middle; the planet is at its
brightest because nearest to the Earth. The motion of
the outer planet around the Sun can be inferred from
the consecutive oppositions, while the varying amplitude
of the reversal motion measures directly the relative size
of the Earth’s orbit compared with the distance of the
outer planet.

Ptolemy noticed that the eccenter model for the outer
planet, after its eccentricity «p had been adjusted to give
the correct time intervals between the oppositions,
yields twice the observed variation of the reversal mo-
tion. Without being aware of the physics involved, he
was effectively trying to conserve the angular momen-
tum of the outer planet around the Sun. Here is his in-
genious solution of this puzzle.

In the heliocentric picture the outer planet moves on
an eccentric circle, whose center O is shifted away from
the Sun in S by «pa8, but the planet does not run around
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O at uniform speed. Rather, an equant point S8 is con-
structed at the distance 2«pa8 from S, in the same direc-
tion as the center O. The planet is made to move at
constant angular speed around this equant point S8,
rather than around the center O. The outer planet varies
its speed on the eccentric circle by twice as much as the
variation of its distance from the Sun.

F. The Earth’s orbit and Kepler’s second law

More than a thousand years were to pass before
Ptolemy’s clever constructions were seriously ques-
tioned. The reader is encouraged to consult the collec-
tion of articles by Owen Gingerich (1993) for a more
detailed discussion of the development that led from
Ptolemy to Copernicus and finally to Kepler. Here is a
very brief account.

When Tycho Brahe died in 1600 he left his successor a
treasure trove of the most meticulous observations with
the best instruments that he was able to build. Kepler
studied the orbit of Mars because it has the largest ec-
centricity among the classical planets (excepting Mer-
cury, which is difficult to observe) and could be expected
to yield the most telling clues for the renewal of as-
tronomy. But before starting this challenging task, he
had to know exactly the orbit of the Earth around the
Sun because, after all, that was the base for Brahe’s
data. Almost one-fourth of Kepler’s New Astronomy,
published in 1609, is devoted to this preliminary project.
Max Caspar (1929), the editor of Kepler’s Collected
Works, has published a beautiful translation of the New
Astronomy into German. Aside from a detailed para-
phrase by Small (1963), English speakers had to wait
until 1992 for a translation by Donahue (1992).

Kepler triangulates the Earth’s orbit with the help of a
fixed base, for which he uses the position of Mars at
regular intervals of 687 days, the period of Mars in its
orbit around the Sun S. He is tremendously pleased with
his discovery that the equant model is also applicable to
the Earth E. First he argues that the Earth’s speed near
the perihelion P and the aphelion A is inversely propor-
tional to the distance r8 from the Sun. Since he is con-
vinced that the Earth’s motion is determined by the Sun,
he then generalizes this idea: if the Earth’s orbit, say the
eccentric circle, is broken up into short intervals, the
total time to get from A to E would be proportional to
the sum over all these short intervals where each is mul-
tiplied with its distance from S.

Although Kepler takes the trouble to show that this
way of calculating the earth’s motion differs only insig-
nificantly from the equant construction, he finds this sum
very cumbersome to compute. He now searches for an
easier way of relating his construction by small intervals
to the real Sun in S. He hits upon his second law; the
time for the Earth to get from A to E is proportional to
the area that is swept out by the vector from S to E. He
shows that this third way of computing is consistent with
the two other models for the Earth.
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G. The elliptic orbit of Mars

Kepler now faces the main part of his epic struggle,
namely, to find the exact orbit of Mars around the Sun.
The accurate knowledge of the Earth’s orbit around the
Sun and Brahe’s observations over 20 years show that
the orbit of Mars is not an eccentric circle. The New
Astronomy gives a detailed report of all the detours and
lucky incidents that finally led to the idea of the ellipse
with the Sun in one of the foci, and the times propor-
tional to the area.

The role of the mean anomaly is taken over by the
area that is swept out by the radius from the Sun to
Mars, counted from the perihelion. If this area is nor-
malized to 2p for one complete orbit, it is represented
by the angle l 8, whose value increases linearly with
time. The true anomally f8 and the eccentric anomaly v8
keep their original meaning as the angles seen from the
Sun and from the center of the orbit, all of them mea-
sured from the perihelion.

The mathematical relations between these angles and
with the distance from the Sun turn out to be elemen-
tary, but still quite tricky. Leaving out the primes on the
following formulas, one gets for the distance

r5
a~12«2!

11« cos f
, (7)

where a is the semi-major axis and « the eccentricity. In
Cartesian coordinates with the x axis in the direction of
the perihelion, the ellipse is given by the equations

x5r cos f5a~cos v2«!,

y5r sin f5aA12«2 sin v . (8)

The connection with the mean anomaly l is given by
Kepler’s equation,

v2« sin v5l 5n~ t2t0!, (9)

where t0 is the time of perihelion passage, and the mean
motion n is the mean angular speed, 2p divided by the
period T0 .

H. Expansions in powers of the eccentricity

The eccentric anomaly v is of no interest, but it can-
not be avoided when the radius r and the true anomaly
f are directly expressed in terms of the mean anomaly l ,
i.e., the time t and the eccentricity «. The relevant ex-
pressions can only be given as Fourier expansions in l
whose coefficients are power expansions in «. These ex-
pansions are not hard to get; but when the astronomer
Friedrich Wilhelm Bessel tried to compute them to high
order, he found it necessary to invent the functions that
now carry his name! Notice that the mean anomaly l is
counted from perihelion, a convention that we shall
keep from now on.

Only the terms to order «2 will be listed:
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a
511
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«22« cos l 2
1
2

«2 cos 2l 1¯ , (10)
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f5l 12« sin l 1
5
4

«2 sin 2l 1¯ . (11)

These formulas will eventually reappear when the mo-
tion of the Earth around the Sun is taken into account
explicitly to get the corrections for the motion of the
Moon around the Earth.

Finally, we list two more expressions for the same ex-
pansions in order to make the connection with the epi-
cycle theory,
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The simple epicycle idea has become a Fourier expan-
sion. Equivalently,
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4
«2 sin 2l 1¯ G , (13)

where the real part indicates the correction in the dis-
tance r , while the imaginary part describes the correc-
tion in the true anomaly f . In lowest order, the latter is
obviously twice as large as the former. The factor 2, be-
tween 2« cosl and 2i« sin l , is designed to preserve
the angular momentum and was correctly given in Ptole-
my’s equant model.

V. THE MANY MOTIONS OF THE MOON

A. The traditional model of the Moon

A plane through the center of the Earth is determined
at an inclination g of about 5 degrees with respect to the
ecliptic. The Moon moves around the Earth in that
plane on an ellipse with fixed semi-major axis a and ec-
centricity « of about 1/18. The Greek model was quite
similar, except that the ellipse was replaced by an eccen-
tric circle.

The plane itself rotates once every 18 years in the
backward direction, i.e., against the prevailing motion in
the solar system, while keeping its inclination constant.
The perigee of the Moon, its point of closest approach to
the Earth, makes a complete turn in the forward direc-
tion in about nine years.

The following picture (see Fig. 1) emerges: first we fix
the direction of the spring equinox or some fixed star
near it as the universal reference Q in the ecliptic:
counting always from west to east, we determine the
angle h from Q to the ascending node, i.e., the line of
intersection for the Moon’s orbit with the ecliptic where
the Moon enters the upper side of the ecliptic; from
there we move by an angle g in the Moon’s orbital plane
until we meet the perigee of the Moon; and finally we
get to the Moon by moving through the true anomaly f .
All these three angles have a double time dependence:
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linear (increasing for f and g , while decreasing for h)
plus various periodic terms that average to 0.

B. The osculating elements

Assuming that the Moon’s position x⇀ and its momen-

tum p⇀ with respect to the Earth are known at some
time t , its total energy (kinetic plus potential with re-
spect to the Earth) gives the semi-major axis a ; its an-
gular momentum L⇀ yields not only the inclination g and
orientation h of its orbital plane, but also its eccentricity
«; finally, its so-called Runge-Lenz vector,

F⇀5@ p⇀ , L⇀#1G0EM2 x⇀/r , (14)

gives the location of the perigee, i.e., the angle g with
respect to the node, and from there the true anomaly f .
The masses of the Earth and of the Moon are called E
and M , while G0 is the gravitational constant.

These elements a , «, g, h , g , f for the Moon give the
parameters of the Kepler ellipse that fits the lunar tra-
jectory most closely at the time t ; they have complicated
variations with the time t . The linearly increasing parts
in the angles get special names and symbols; they are
used as the basis for all the future computations. The
mean anomaly l is the linearly varying part of the true
anomaly f ; the mean argument of the latitude F is the
linear part of the distance f1g from the node; the mean
longitude l is the linear part of the distance f1g1h
from the reference Q .

Whereas a single variable, the mean longitude, is suf-
ficient for describing the complete motion of a planet
around the Sun, three angles are required for the Moon:
the mean longitude l for the main motion around the
Earth, the mean argument of latitude F for the motion
out of the ecliptic, and the mean anomaly l for the ra-
dial motion. The osculating elements a , g, and « have
only periodic variations. But, according to Fig. 2, it is
quite misleading to think of the lunar orbit as having a
fixed eccentricity like «>1/18, because the value of the
osculating eccentricity varies enormously and quite fast.

FIG. 1. The basic lunar model from antiquity (adopted ever
since) consists of an orbital plane for the Moon containing an
epicycle for its orbit; the crucial parameters a ,« ,g and the
three angles l ,g ,h have their modern interpretation.
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C. The lunar periods and Kepler’s third law

To each rate of change for an angle with linear time
dependence corresponds a period that was well known
to the Babylonians and Greeks:

T15tropical month (equinox to equinox)527.32158
days,

T25anomalistic month (perigee to perigee)527.55455
days,

T35draconitic month (node to node)527.21222 days,
measured in mean solar days. The fifth decimal corre-
sponds to 1 second of time and was correctly known to
the Greeks. The mean longitude l increases by 2p in the
period T1 , the mean anomaly l increases by 2p in the
period T2 , and the argument of latitude F in the period
T3 .

By combining the tropical month with the period for
the Sun’s returning to the spring equinox,

T05tropical year5365.2422 days,

we obtain the second most familiar period in this system,
the average time between new moons, which turns out
to be T5T0T1 /(T02T1)529.53059 days. The mean
elongation D5l2l8 increases by 2p in one synodic
month.

The Greeks related all events in the sky to the spring
equinox, but an inertial system of reference is preferable
when doing physics. The return of the Moon and the
Sun to the same fixed star defines the sidereal month
T1527.32166 days and the sidereal year T05365.257
days.

Let n be the rate of increase of the Moon’s mean
longitude l, and n8 the rate of increase of the Sun’s
mean longitude l8. Then Kepler’s third laws are, in the
complete form that was first given by Newton,

n2a35G0~E1M !, n82a835G0~S1E1M !. (15)

Only the products G0M , G0E , and G0S appear in the
following discussion. The semi-major axes a for the

FIG. 2. The effective eccentricity of the lunar trajectory as a
function of time; the abscissa gives the time in synodic months,
starting with the year 1980; the traditional picture of the
Moon’s motion is obviously not adequate (see Gutzwiller,
1990, page 60).
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Moon and a8 for the Sun can be regarded as defined in
terms of the mean motions n and n8 by Eqs. (15), or the
other way around.

D. The evection—Greek science versus Babylonian
astrology

The Babylonians knew that the full moons could be as
much as 10 hours early or 10 hours late; this is due to the
eccentricity « of the Moon’s orbit. But the Greeks
wanted to know whether the Moon displays the same
kind of speedups and delays in the half moons, either
waxing or waning. The answer is found with the help of
a simple instrument that measures the angle between
the Moon and the Sun as seen from the Earth.

The half moons can be as much as 15 hours early or
late. With the Moon moving at an average speed of
slightly more than 308 per hour (its own apparent diam-
eter!), it may be as much as 5° ahead or behind in the
new/full moons; but in the half moons, it may be as
much as 7°308 ahead or behind its average motion. This
new feature is known as evection.

Ptolemy found a mechanical analog for this peculiar
complication, called the crank model. It describes the
angular coupling between Sun and Moon correctly, but
it has the absurd consequence of causing the distance of
the Moon from the Earth to vary by almost a factor of 2.

In the thirteenth century Hulagu Khan, a grandson of
Genghis Khan, asked his vizier, the Persian all-round
genius Nasir ed-din al Tusi, to build a magnificent obser-
vatory in Meragha, Persia, and write up what was known
in astronomy at that time. Ptolemy’s explanation of the
evection was revised in the process. In the fourteenth
century Levi ben Gerson of Avignon in southern France
seems to have been the first astronomer to measure the
apparent diameter of the Moon (see Goldstein, 1972,
1997). Shortly thereafter Ibn al-Shatir of Damascus in
Syria proposed a model for the Moon’s motion that co-
incides with the theory of Copernicus two centuries
later. The crank model was replaced by two additional
epicycles, yielding a more elaborate Fourier expansion
in our modern terminology (see Swerdlow and Neuge-
bauer, 1984).

With the improvements of the Persian, Jewish, and
Arab astronomers, as well as Copernicus, the changes in
the Moon’s apparent diameter are still too large with
610%. As in Kepler’s second law, the Fourier expan-
sion (12) has to include epicycles both in the backward
and in the forward direction, in the ratio 3:1. Thus one
eventually finds for u5x1iy the expansion
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The second line shows the maximum deviation from
the uniform angular motion to vary between 62(«2d)
in the full/new moons and 62(«1d) in the half moons.
Therefore we finally get «5 .055 and d5 .011. The dis-
tance of the Moon varies at most by 66.6%, and the
apparent diameter of the Moon varies between 288 and
328.

E. The variation

At the end of the 16th century, Tycho Brahe mea-
sured continuously for over twenty years everything that
happened in the sky. He was lucky because he witnessed
in 1572 the last big supernova in our Galaxy (the super-
nova of 1604 seen by Kepler was much smaller), and we
have been waiting for any supernova in our galaxy ever
since. He also saw a large comet in 1577 and was able to
show that it was outside the sphere of the Moon. He did
all that with his bare eyes and those of his assistants,
after he had built the largest and best instruments ever,
and reached a precision of 1 minute of arc. He published
a detailed description of his magnificent observatory on
the Danish island Hveen (see the English translation of
Raeder, Stroemgren, and Stroemgren, 1946).

Brahe’s lunar theory is contained in Part 1 of his Pre-
paratory School for the New Astronomy, which was ed-
ited by Kepler and published posthumously in 1602
(Volume 2 of the Complete Works). Dreyer’s biography
(1890) contains a short discussion of Brahe’s scientific
work, whereas Gade’s (1947) is concerned with his tur-
bulent life; Thoren provides a special chapter on the
theory of the Moon in The Lord of Uraniborg (Thoren,
1990).

Four new ‘‘inequalities,’’ i.e., periodic deviations from
the uniform motion of the Moon around the Earth, were
discovered by Brahe. Kepler tried to give all these mo-
tions a physical interpretation, on the strength of his
boundless imagination and without trying to figure out
quantitatively how large they are.

The most interesting of Brahe’s lunar discoveries is
the variation, a not particularly informative name that
has caused some confusion. It is the third largest correc-
tion to the longitude of the Moon: the anomaly causes
deviations from the mean longitude up to 6°158, the
evection adds another 1°158, while the variation ac-
counts for a further 408. It depends on twice the mean
elongation D5l2l8, i.e., twice the mean angular dis-
tance of the Moon from the Sun. The variation plays a
crucial role in Hill’s theory of the Moon.

F. Three more inequalities of Tycho Brahe

Brahe also found the ‘‘annual, inequality’’ with an am-
plitude of 118, which slows down the Moon in its motion
around the Earth when the Earth is near perihelion and
speeds it up near aphelion.

Finally, Brahe found that the Moon’s orbital plane
can be best understood by its vertical direction’s describ-
ing a small cone around the vertical to the ecliptic. The
opening angle of this cone is 5°118, and the motion of
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the vertical around the cone takes about 18 years. Brahe
recognized that this motion is not quite uniform, but acts
like a deferent with a small epicycle of radius 98 that
turns twice every synodic month. It is as if the Moon’s
orbital plane straightens up a bit when facing the Sun,
which is reasonable on physical grounds.

The net effect on the lunar latitude is similar to the
evection: the main term, g sin (F) (see Sec. V.B), has to
be corrected by a term proportional to sin (F22D) (see
Sec. V.D) with an amplitude of 298. It looks like the
axis of a gyroscope oscillating while going around its
fixed cone. It is accompanied by a periodic shift of the
line of nodes that amounts to 968, a phenomenon that is
usually called a libration.

By the middle of the 17th century, the astronomy of
the solar system had reached a point where any further
progress along the same lines could only confuse the
new picture of the universe that Copernicus, Brahe, and
Kepler had created. With the help of the telescope there
was no lack of serious effort; observational methods im-
proved rapidly and led to an accumulation of new data
that needed more than just an increasing number of em-
pirical parameters. A first systematic survey of the astro-
nomical observations during the 17th century was made
by Pingré, but was published only in 1901. Meanwhile
Newcomb (1878) had collected all the relevant lunar
data to 1900. Gingerich and Welther (1983) have com-
pared astronomical tables from the 17th century with
modern computations. The situation in lunar theory
then had some similarities with our present conditions in
nuclear and high-energy physics, where we seem to be
drowning in a flood of first-class data without a simple
and efficient theory that can be generally understood
while giving good quantitative results. Of course, the
man to change all that for the Moon’s motion was Isaac
Newton.

VI. NEWTON’S WORK IN LUNAR THEORY

A. Short biography

By the middle of the 17th century the passion for sci-
ence had grown to such an extent that it became an
official function of the state. In 1666, under the leader-
ship of the young Louis XIV and his prime minister Col-
bert, the French government organized its Royal Acad-
emy, where Christiaan Huygens became the best paid
member at the age of 37. In his efforts to build more
reliable clocks, he discovered and then published in 1673
the law of circular motion: the centrifugal force is pro-
portional to the mass and the square of the velocity, and
inverse to the radius. He also visited England several
times and participated in experiments to establish the
laws of motion for bodies impacting on one another (see
Bell, 1947).

Meanwhile, an obscure fellow at the University of
Cambridge had figured out the same laws of mechanics
on the basis of some exceedingly clever arguments such
as bouncing a body inside a square box to get the cen-
trifugal force. Isaac Newton, born on Christmas Day of
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1642 (the year Galileo died), had done entirely novel
work in mathematics, mechanics, and optics while a stu-
dent and then a fellow at Cambridge, but hardly any-
body knew about it. In 1669, he was lucky to become the
Lucasian professor of mathematics upon the resignation
of the more ambitious Isaac Barrow. Newton acquired
fame, and membership in the recently founded Royal
Society of London, with his work in optics and the con-
struction of his reflecting telescope in 1671. But the pub-
licity and the scientific arguments were too much for
him, and he almost completely retired from contact with
any colleagues for over a decade, while he devoted his
time mostly to theology and alchemy.

His scientific talents were finally mobilized again
when the new secretary of the Royal Society, the as-
tronomer Edmond Halley, went to see Newton in Au-
gust 1684 to get the answer to an important problem: If
Huygens’ formula for the centrifugal force is combined
with Kepler’s third law, the force that attracts the plan-
ets to the Sun or the Galilean moons to Jupiter is found
to vary inversely with the square of the distance. Halley
had come to this conclusion in conversations with the
physicist Robert Hooke and the engineer-architect
Christopher Wren at a meeting of the Royal Society in
January 1684. But none of them had been able to show
that Kepler’s first and second laws could be derived di-
rectly from the assumption of this inverse-square-of-the-
distance force. Newton claimed that he had derived Ke-
pler’s laws in this way some time ago, but he could not
find the relevant papers.

In November 1684 Halley received a manuscript from
Newton, ‘‘On the Motion of Bodies in an Orbit,’’ that
contains all we know now about the motion on conic
sections, including even a discussion of the effect of a
resisting medium (see Ball, 1983; Hall and Hall, 1962;
Herivel, 1965; Mathematical Papers, 1967–1981; Cohen,
1978). Two years later, the printing of The Mathematical
Principles of Natural Philosophy (usually referred to as
the Principia from the Latin title) got started under Hal-
ley’s watchful eye, and on July 5, 1687 the task was com-
pleted (Newton, 1687). This monumental work has 510
pages of tightly argued mathematical physics, all of them
conceived and written in two and a half years. The two-
page preface gives Halley some credit for his ‘‘encour-
agement and entreaties’’ to publish and offers the fol-
lowing remarks on Newton’s work concerning the
Moon:

‘‘But after I had begun to consider the inequalities of
the lunar motions, . . . , I deferred that publication till I
had made a search into those matters, and could put forth
the whole together. What relates to the lunar motions (be-
ing imperfect), I have put all together in the corollaries of
Proposition LXVI, . . . . Some things, found out after the
rest, I chose to insert in places less suitable, rather than
change the number of propositions and the citations.’’
Among the few subjects that Newton mentions in the
preface to the second edition in 1713, he says that ‘‘the
lunar theory and the precession of the equinoxes were
more fully deduced from their principles.’’ And in the
equally short preface to the third and last edition of
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1726, ‘‘the argument to prove that the moon is retained in
her orbit by the force of gravity is more fully stated.’’ It
sounds almost like ‘‘back to the drawing board.’’

In the years after the completion of the Principia in
1687, Newton did some work in mathematics and optics;
he also went back to alchemy, but he hardly touched the
topics in the Principia any more. He tried to get better
observations of the Moon from the Astronomer Royal,
John Flamsteed, who was more interested in establish-
ing his great star catalog, and the two parted ways after
quarreling.

Newton left the pursuit of science altogether after his
breakdown in 1694. He became Warden and then Mas-
ter of the Mint, a job which he pursued with great en-
ergy and in which he essentially controlled the circula-
tion of money in the United Kingdom. He became
wealthy, but his scientific life was limited to presiding
over the Royal Society with an iron hand until his death
in 1728. His pivotal role in the development of math-
ematics, astronomy, and physics is all concentrated in
relatively few years of his long life.

Many biographies of Newton have been written, espe-
cially in the last decades, for example, those of, Manuel
(1968), Westfall (1980), Christianson (1984), Gjertsen
(1986), and White (1997). There are always some new
documents to be discussed and circumstances to be
noted that were not appreciated in earlier reports. One
of the first biographies was written by Sir David Brew-
ster of optics fame; it has the great virtue of pursuing
Newton’s achievements and their further developments
all the way to 1855 when it was published. Although
many documents concerning Newton’s life and work
have been discussed at great length ever since, he re-
mains a lonely and mysterious figure with achievements
to his credit that have no equal in the history of science.

B. Philosophiae Naturalis Principia Mathematica

Newton’s monumental work is hard to understand
even in a modern translation. His great predecessors,
Galileo, Kepler, and Huygens, are generally easier to
digest, perhaps because their achievements are simpler,
but also because they tried to explain themselves to
lesser mortals. Whereas the reader of a modern mono-
graph is overwhelmed with intricate technical details,
Newton presents a sequence of statements about the
geometric relationships in diagrams of deceptive sim-
plicity.

After two short introductory chapters entitled ‘‘Defi-
nitions’’ and ‘‘Axioms or Laws of Motion,’’ Newton
moves immediately to the core of the matter. Proposi-
tion I is the statement of Kepler’s second law for the
general case of a centripetal force, i.e., an attractive
force that depends only on the distance from the center.
The sixth corollary of proposition IV gives credit to Hal-
ley, Hooke, and Wren, and various problems are solved
in the same section. Then comes the important proposi-
tion XI, in which the central force in a Kepler ellipse is
shown to vary as the inverse square of the distance. The
same thing is shown for hyperbolas and parabolas, and
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proposition XV then proves Kepler’s third law, on page
56 of a volume with 510 pages.

The remainder of Book I covers many problems that
are connected with orbits whose shape is a conic section,
e.g., finding the Kepler ellipse from a certain set of ini-
tial conditions. The first statements are made that are
equivalent to the conservation of energy. Section 9 will
be discussed in detail below because it deals with trajec-
tories that result from rotating a stationary orbit. Section
11 treats two-body problems without external forces and
derives Kepler’s third law in its complete form [Eq. (15)]
which is required for double stars. This section ends with
proposition LXVI, which is central for lunar theory. Sec-
tion 12 covers the potential theory for bodies of spheri-
cal shape, and section 13 does it for bodies of arbitrary,
in particular ellipsoidal, shapes. The comparison with as-
tronomical observations is left to Book III (the last) en-
titled ‘‘The System of the World,’’ where many of the
earlier results are clarified.

There exists a small volume entitled A New and most
Accurate Theory of the Moon’s Motion ‘‘whereby all her
Irregularities may be solved, and her Place truly calcu-
lated to Two Minutes. Written by that Incomparable
Mathematician Mr. Isaac Newton, and published in
Latin by Mr. David Gregory in his Excellent As-
tronomy. London, Printed and sold by A. Baldwin in
Warwick-Lane. 1702.’’ It is more a description than an
explanation such as Newton attempted in the Principia.
It contains, however, a very eloquent statement of New-
ton’s attitude toward lunar theory. The preface ‘‘To the
reader’’ starts out: ‘‘The Irregularity of the Moon’s Mo-
tion hath been all along the just Complaint of Astrono-
mers; and indeed I have always look’d upon it as a great
Misfortune that a Planet so near us as the Moon is, . . .
should have her Orbit so unaccountably various, that it is
in a manner vain to depend on any calculation . . . ,
though never so accurately made.’’ Notice the marvelous
definition of what we would call chaos nowadays! See
Cohen (1975), as well as Waff (1976) and (1977).

A number of major as well as minor scientists have
taken the trouble to present Newton’s arguments for
students in the sciences and for the educated layperson.
Outstanding among these authors are the astronomers
Sir George Airy in 1834 and Sir John Herschel (son of
William, the discoverer of Uranus) in 1849, as well as
Henry Lord Brougham (formerly Lord Chancellor) and
E. J. Routh, who wrote a very useful Analytical View of
Sir Isaac Newton’s Principia in 1855. Two recent books
make a valiant effort to introduce the reader to the un-
familiar methods of the Principia: Brackenridge (1995)
and Densmore (1995) cover only the proofs of Kepler’s
laws whereas Chandrasekhar (1995) discusses both
Books I and III; see the essay review by Westfall in Isis
(1996).

Lunar theory was the first instance in all the sciences
where sheer intuition was no longer sufficient to keep up
with the rapidly increasing accuracy of the observations.
Nevertheless, we shall track down a few of Newton’s
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ideas on this subject to see how far he was able to get,
although he abandoned his search while still far from his
own goals.

C. The rotating Kepler ellipse

Lunar theory makes its first surreptitious appearance
in propositions 43 to 45, where Newton discusses the
possibility of a Kepler ellipse rotating at some uniform
rate as it occurs for the Moon. He assumes a purely
centripetal force, so that Kepler’s second law is still
valid. The apsides (places of largest and smallest separa-
tion) rotate because the force is no longer assumed to be
inversely proportional to the square of the distance r .
The resulting trajectory looks like the petals of a flower.

Let us set up the problem in the way in which it would
appear in a modern textbook. A body of known mass
m0 is moving around a fixed center, which is located at
the origin of a polar coordinate system (r ,f). The force
is a known function F(r)52dV/dr in terms of the po-
tential V(r). Newton introduces the idea of a conserved
angular momentum L without defining any such quan-
tity. The equation for the radial motion becomes

m0

d2r

dt2 5F~r !1
L2

m0r3 . (17)

Newton’s proposition 44 says essentially the same in
words.

The eccentricity « is assumed to be small, so that the
orbit is very close to a circle, and the distance between
the two bodies varies only over a narrow range (r1 ,r2).
Newton now comes up with an ingenious trick that re-
veals his deep understanding of physics, although the
reader has to figure out in her own terms what exactly
goes on in Newton’s mind: Since the 1/r2 force works
out so well, whatever the centrifugal force that goes as
1/r3, why not make an expansion for the arbitrary force
F(r) where only these two terms occur?

Newton treats as his second example the case in which
F(r)52const rn/r3, where the exponent n.0, and n51
for the gravitational force. The change C in the angle f
from one closest approach to the next becomes 2p/An ,
which is the main result of Newton’s section 9 after an
11-page argument.

D. The advance of the lunar apsides

Without explaining what he is doing, Newton pro-
poses as the third example of the advancing apsides the
case of a small perturbative force that is repulsive and
varies linearly with the distance, so that

F~r !52
G0M0m0

r2 1m0v2r , (18)

where the circular frequency v is our parameter to keep
the correct dimensions of a force. Its value remains open
at this point.

The calculation follows the same pattern as in the pre-
ceding section and yields
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C>2pS 11
3v2

2n2 D , (19)

provided the second term is small. In the case of the
Moon, the angular speed is given by n52p/T1 , where
T1 is the sidereal month.

Without any explanation, Newton now proposes for
the ratio v2/n2 the value 100/35745 and concludes that
the perigee advances by 1°318289. Only the third edition
of the Principia, almost 40 years later, ends this whole
section with the cryptic remark: ‘‘The apse of the Moon
is about twice as swift.’’ Nevertheless, after the data had
been known with high accuracy for over 2000 years,
Newton was able to reduce the difference between the
anomalistic and the sidereal month to the ratio
(T1 /T0)2. The missing factor 2 in the motion of the
Moon’s perigee was finally explained 20 years after his
death.

E. Proposition LXVI and its 22 corollaries

Modern language and contemporary symbols like vec-
tors will be used in this section to explain the basic ideas
in proposition LXVI. Nevertheless, it is a sacred duty to
emphasize what we owe to Newton’s crucial insights,
without which there would be no progress in under-
standing the motion of three masses that interact
through gravitational forces. All his reasoning over 15
pages is based on a single diagram (Fig. 3), which is
repeated seven times, on every second page, to spare the
reader the tedium of turning pages while thinking. The

FIG. 3. Newton’s Proposition LXVI from the first book of the
Principia explains the essence of his lunar theory (see the quo-
tation in Sec. VI.A); its 22 corollaries cover 15 pages, and con-
tain a single figure, which is repeated on every second page in
the third edition. The Sun’s attraction to the Moon is repre-
sented by the line SL and is decomposed into the sum SM
1ML for the detailed discussion.
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corresponding Fig. 4 will be used as the modern equiva-
lent, where the nomenclature agrees with the later chap-
ters.

The main proposition as applied to the lunar problem
claims the following: The motion of the Moon around the
Earth under the gravitational attraction of both the Earth
and the Sun comes closer to the ideal Kepler motion, if
the Earth in turn is allowed to move under the gravita-
tional attraction of both the Sun and the Moon rather
than being forced to remain at a fixed position.

In Fig. 3 we have the Earth with mass E in T (tellus),
the Sun with mass S in S (sol), and the Moon with mass
M in P (planeta). In Fig. 4 the Moon’s and Earth’s loca-
tions are designated by M and E , while G is the center of
mass for the double planet Earth-Moon. The vectors
connecting various points in Fig. 4 are xY of length r
pointing from E to M ,xY 8 of length r8 pointing from S to
E , j of length r pointing from S to M , and XY of length
R pointing from S to G.

The crux of Newton’s argument lies in representing
the ‘‘accelerative force’’ of the Sun on the Moon by the
segment SL in Fig. 3. This segment is then decomposed
into the sum of the two segments SM and ML, where
ML is parallel to the line TP which connects the Earth
with the Moon. Referring to Fig. 4, we get the first com-
ponent of the Moon’s perturbation by the Sun,

G0SxY 8S 1
r32

1
r83D>3G0S

xY 8

r8

~xY 8,xY !

r84 , (20)

which is clearly of the same order as the second compo-
nent,

2G0S
xY

r3 >2G0S
xY

r83 . (21)

Newton now studies the effect of these perturbative
accelerations on the orbit of the Moon around the
Earth. According to Corollary 2, the Moon’s angular
momentum with respect to the Earth is larger in the
syzygies (new and full moon) than in the quadratures
(half moons). Moreover, according to Corollary 3, the
Moon’s speed is larger in the syzygies than in the
quadratures. Corollary 4 points out, however, that the
lunar orbit is more highly curved in the quadratures than
in the syzygies because the solar perturbation decreases
the Earth’s attraction in the syzygies, while its radial
component helps in the quadratures. Corollary 5 ex-

FIG. 4. Modern version of Fig. 3 containing the center of mass
G of the Earth-Moon double planet that is shown to circle the
Sun almost exactly on a Kepler ellipse. The vectors are xY from

the Earth in E to the Moon in M , X⇀ from the Sun in S to G,
xY 8 from S to E , and j⇀ from S to M .
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plains that the Moon is further from the Earth in the
quadratures than in the syzygies. But we still have to
account for the motion of the apsides.

F. The motion of the perigee and the node

From Corollary 7 onward, Newton gets to the main
job of estimating the strength of the solar perturbation.
Since r8>a8, i.e., the semi-major axis of the Earth’s or-
bit around the Sun, one can simplify Eqs. (20) and (21)
by approximating,

G0S

r83 >
G0S

a83 5n82, (22)

with the help of Kepler’s third law [Eq. (14)]. The first
component [Eq. (20)] of the solar perturbation is always
repulsive, and its average over all directions reduces to
1(3/2)n82r , while the second component [Eq. (21)] be-
comes simply 2n82r . If these two contributions are
added and multiplied with the Moon’s mass M , the av-
eraged force of the Sun on the Moon becomes
1(M/2)n82r .

In order to apply the result from Sec. VI.D, we have
to set m05M and v25n82/2 in Eqs. (18) and (19). Since
(n8/n)251/178.7 is exactly twice the ratio 100/35745
which was used by Newton, we find the explanation for
his cryptic statement. His result can also be written in
the form.

n25
2p

T2
>nS 12

3
4

n82

n2 D , T2>T1S 11
3n82

4n2 D . (23)

Newton expands the scope of his arguments with the
help of some striking images in the later corollaries. The
mass of the Moon is distributed in a rotating ring around
the Earth. This ‘‘lunar ring’’ is inclined by g with respect
to the ecliptic and experiences the pull of the Sun in the
syzygies. Nowadays we would conceive of the lunar orbit
as a fast gyroscope whose axis of rotation is not quite
perpendicular to the ecliptic. The change in angular mo-
mentum is due to the solar torque and yields the regres-
sion of the lunar node,

n35
2p

T3
5nS 11

3
4

n82

n2 D , T35T1S 12
3n82

4n2 D . (24)

The 22 corollaries in Proposition LXVI do not give
the impression of being organized very systematically.
They look more like an accumulation of intuitive in-
sights, all based on the gravitational interaction of three
bodies and sometimes argued with a great deal of imagi-
nation. The motion of the lunar nodes is seen as closely
related to the problem of the tides, as well as the pre-
cession of the equinoxes.

G. The Moon in Newton’s system of the world (Book III)

Newton tested his grand theory of universal gravita-
tion almost exclusively by studying the motion of the
Moon, including its effect on the motion of the Earth as
manifested in the tides and the precession of the equi-
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noxes. If one adds up the number of pages in the Prin-
cipia that are devoted to lunar problems, their total
probably exceeds the space that is devoted to all the
two-body problems, including the discussion of the plan-
etary motions.

Book III, ‘‘The System of the World,’’ talks about the
Moon more directly rather than citing it only as an ex-
ample of some general proposition. The rotation of the
Earth is discussed, and its flattening at the poles is sug-
gested. The only evidence for this phenomenon at the
time was the length of the second pendulum, which was
observed to be shorter near the Earth’s equator. That
leads to the precession of the equinox by 509/year, of
which the Moon accounts for 409/year and the Sun only
109/year. The tides are also described in detail with
some qualitative explanations.

Then comes the rather audacious claim concerning
the motions of the Moon that ‘‘all the inequalities of
those motions follow from the principles which we have
laid down.’’ The discussion of proposition LXVI is taken
up again with the relevant numerical figures this time.
The variation of Tycho Brahe is explained under the
assumption of a circular orbit. The perturbation of the
Sun produces a closed oval orbit that is centered on the
Earth with the long axis in the direction of the quadra-
tures. This ingenious idea would have to wait almost 200
years before being taken up again by G. W. Hill (1877).

The motion of the nodes gets many pages of geomet-
ric discussion, including the libration of the inclination
and of the nodes. Various annual effects are described
and explained qualitatively, and even the figure of the
Moon is brought up. But neither the motion of the peri-
gee (with the missing factor 2) nor the evection are men-
tioned further. In the final analysis, many qualitative ex-
planations concerning the three-body problem are
advanced, but only two numbers, the motion of the
Moon’s perigee and of her node, are obtained. Nothing
of substance was added to this record for another 50
years after the first appearance of the Principia. Never-
theless, Newton had succeeded in starting a grand unifi-
cation to the point where hardly anybody could doubt
that his somewhat spotty results were only the first signs
of a whole new approach to the riddles of nature.

VII. LUNAR THEORY IN THE AGE OF ENLIGHTENMENT

A. Newton on the continent

Although a new age in celestial mechanics as well as
in many other branches of the sciences started with
Newton, it almost looks as if nobody dared to expand
upon his great achievements while he was still alive. The
United Kingdom, in particular, needed more than a cen-
tury to liberate itself from his awesome and fearful pres-
ence. On the continent, however, there was a full flow-
ering of his ideas, starting in the late 1730s, fifty years
after the Principia was published. By the end of the cen-
tury the marriage of physics with mathematics had been
consummated and was producing many healthy off-
spring.
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The French Academy of Sciences decided to test
Newton’s prediction that the Earth has a flattened shape
which is shorter along its axis of rotation by a fraction of
a percent. A first expedition under the leadership of
Charles-Marie de la Condamine left France in the spring
of 1735 to measure an arc of 3 degrees near Quito (Ec-
uador), from whence it returned successfully in 1744 af-
ter incredible adventures and hardships (Condamine,
1751). A second, more high-powered group headed by
Moreau de Maupertuis left in the spring of 1737 for Tor-
nea in Lapland, in the north of Sweden, and returned in
the summer of 1738 after a job done too well [see Mau-
pertuis, 1756a and 1756b]. Their measure of one degree
in the far north yielded some 700 meters more than near
Paris, too much by a factor of 2 (see Svanberg, 1835).

But Newton was vindicated against some earlier mea-
surements by the Cassinis, father and son, who had com-
pared the length of one degree in the north and the
south of France. Voltaire (1738) had published a very
popular and competent ‘‘Elements of Newton’s Philoso-
phy,’’ and now had a good time greeting the heros re-
turning from Lapland: ‘‘You have flattened the Earth
and the Cassinis’’ (Terral, 1992). He also encouraged his
friend, Gabrielle-Emilie de Breteuil, Marquise du Chat-
elet, to translate the Principia into French: but her work
appeared only in 1756, seven years after her death in
childbirth. Meanwhile, two French scientist-priests, Tho-
mas Le Seur and Francois Jacquier (1739–1742), had
written an extensive commentary on the Principia in
which many of the obscure passages are more fully ex-
plained; they included the three memoirs on the tides by
Daniel Bernoulli, Colin McLaurin, and Leonard Euler
that had received a prize from the French Academy in
1740.

B. The challenge to the law of universal gravitation

Even the theory of the Moon’s motion around the
Earth had its moment of drama in this atmosphere of
scientific excitement. It involved the three most talented
and productive mathematical physicists of the time. In
1736, while a member of the St. Petersburg Academy,
Leonard Euler had published the first textbook on Me-
chanics, in which a plethora of problems were solved for
the first time with the help of calculus. Alexis Clairaut
had entered the French Academy of Science at the age
of 16, had participated in the expedition to Lapland with
Maupertuis, and had helped the Marquise du Chatelet in
her translation of Newton. Jean Le Rond d’Alembert
(1743) was the author of the first treatise on Dynamics,
in which Newton’s laws were established on the basis of
general principles relating to the nature of space and
time. All three of them decided, simultaneously but in-
dependently, to put lunar theory on a firmer base.

They all submitted their different versions during the
summer of 1747 to the Secretary of the French Acad-
emy, but found out only during the winter what the oth-
ers had to say. Euler (1746) had published New Astro-
nomical Tables for the Motions of the Sun and the Moon
the year before, telling the reader only how to use them,
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but without explaining how he had computed them.
Now he was competing for another prize from the
French Academy (which he won as he did 10 others),
this one to explain some of the irregularities in the mo-
tions of Saturn. Jupiter and Saturn are in a 2/5 reso-
nance, and Euler’s treatment showed that he had a lot to
say about the Moon as well. Clairaut pointed out that, as
a member of the Academy, he like d’Alembert is not
allowed to compete for the prize.

All of them wrestled with the problem of the motion
of the lunar perigee. They were unanimous in claiming
that Newton’s law of universal gravitation with the
inverse-square-of-the-distance dependence does not ac-
count for the observed value, which is larger by a factor
of 2, as Newton had already found. In addition, Clairaut
(1747) now proclaimed as a great discovery that the dis-
tance dependence of the universal gravitation had to be
modified for short distances by adding a term in 1/r4 (see
the Ph.D. thesis of Craig Waff, 1976). He was immedi-
ately taken to task by Georges-Louis Leclerc, Comte de
Buffon (1747), his famous colleague from the section of
natural history, who was unwilling to believe that an im-
portant principle of physics could end up leading to a
fundamental force with a complicated mathematical
form. Was that the last time a representative of the life
sciences entered into a lively debate with a theoretical
physicist concerning the general principles of the physi-
cal sciences?

Clairaut (1752) went back to work a little harder; he
pushed his approximations to higher order in the crucial
parameter m5n8/n , and found the required correction.
He deposited the relevant paper at the French Academy
in January 1749 while announcing his results without ex-
planation, and submitted his work to the Russian Acad-
emy in St. Petersburg for a prize in lunar theory (Clair-
aut, 1752). Euler was appointed a referee and joined to
his report a voluminous treatise of his own, which was
eventually published as a separate book, usually re-
ferred to as Euler’s first lunar theory (1753). Meanwhile,
d’Alembert (1749) published a treatise about Researches
on the precession of the equinoxes and the nutation of the
Earth’s axis. Together with Diderot he edited the fa-
mous Encyclopédie, which appeared from 1751 to 1766
in 17 large volumes of text plus 11 volumes of etchings.
He also went back to the lunar problem and gave an
algebraic, rather than numerical, calculation for the cor-
rect value of the motion of the perigee.

Reading all this work nowadays is considerably easier
than dealing with Newton, but the authors were still
finding their way through the new language of analysis
rather than elementary geometry. They did not always
find the shortest connections, so much so that Clairaut
ended up with Hebrew symbols because the Latin and
Greek alphabets were too short. Luckily, their work has
been analyzed more recently; first, in the Historical Es-
say on the Problem of Three Bodies published in 1817 by
Alfred Gautier; second, by Felix Tisserand in his classic
four-volume Treatise on Celestial Mechanics from 1889
to 1896, whose third volume is entirely devoted to the
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theory of the Moon’s motion; third, in An Introductory
Treatise on the Lunar Theory by Ernest W. Brown of
1896.

C. The equations of motion for the Moon-Earth-Sun
system

The complete equations for the three-body system
Moon-Earth-Sun will now be written down in the most
straightforward manner. Since the inertial mass of each
of these three bodies always cancels out the gravita-
tional mass, it is simpler to speak directly about the ac-
celerations rather than the forces. We use the nomencla-
ture of Fig. 4, and the masses are again designated by M
(Moon), E (Earth), and S (Sun). The accelerations are
listed as follows:

2
GE

r3 xY 2
GS

r3 jY of the Moon in M , (25)

1
GM

r3 xY 2
GS

r83 xY 8 of the Earth in E , (26)

1
GE

r83 xY 81
GM

r3 jY of the Sun in S . (27)

The main coordinates for the three-body system are
the vector xY from the Earth to the Moon and the vector
XY from the Sun to the center of mass G. Therefore we
find that

xY 85XY 2
M

E1M
xY , jY5XY 1

E

E1M
xY . (28)

It takes a little manipulation to end up with the equa-
tions of motion,

d2xY

dt2 5
E1M

EM
gradxS GEM

r
1

GSM

r
1

GSE

r8 D . (29)

for the Moon with respect to the Earth, and

d2XY

dt2 5
M1E1S

S~E1M !
gradXS GSM

r
1

GSE

r8 D , (30)

for the center of mass G with respect to the Sun. The
distances r5ujY u and r85uxY 8u are to be replaced by Eqs.
(28). These equations are exact and will form the basis
for all our further work.

The vector XY is about 400 times longer than xY , so that
it is natural to expand the denominators in Eqs. (29) and
(30). The gravitational potential becomes an expansion
in Legendre polynomials Pj , where each term can be
interpreted as arising from a multipole. The choice of
coordinates ensures that the dipole terms cancel out,
leaving the quadrupole term as the lowest-order pertur-
bation to the direct interaction. Thus the right-hand side
of Eq. (29) becomes, leaving out the gradx ,
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rj

Rj Pj~cos v!,

(31)

where cos v5( x⇀,X
⇀

)/rR. The right-hand side of Eq. (30)
becomes, leaving out again the gradX ,

G~S1E1M !

R F11
EM

~E1M !2

3(
j52

`
~2 ! jEj211Mj21

~E1M ! j21

rj

Rj Pj~cos v!G . (32)

The trouble in lunar theory arises already in the quad-
rupole term j52.

The quadrupole term in Eq. (32) is smaller than the
monopole term by a factor (1/400)2 from the relative
distances r/R , and another factor 1/80 from the relative
masses M/E ; it will be completely ignored. The solution
to Eq. (30) is, therefore, the simple Kepler motion for
the center of mass G around the Sun. The motion of the
vector XY will henceforth define the plane of the ecliptic,
where it moves according to Eqs. (7)–(13). The distance
r in (7) will be called R , and the remaining symbols will
be decorated with a prime, i.e., a8 instead of a , «8 in-
stead of «, and so on. Kepler’s third law in the form of
Eq. (15) follows immediately.

The approximate size of the quadrupole term in Eq.
(31) can be estimated with the help of the Kepler’s third
law (15) exactly as in Eq. (22). Its quotient by the mono-
pole term in Eq. (31) is ;m25(n8/n)2, as Newton knew
very well. The equation of motion (29) spells out

‘‘The Main Problem of Lunar Theory,’’ that is to find
the motion of the Moon relative to the Earth when the
center of mass for Earth and Moon is assumed to move
on a fixed Kepler ellipse around the Sun, and assuming
that the masses of Moon, Earth, and Sun are concentrated
in their centers of mass.

D. The analytical approach to lunar theory by Clairaut

Clairaut and many celestial mechanicians after him,
including Laplace, chooses the true longitude f rather
than the time t as the independent variable. This prefer-
ence is natural when there are no good clocks available.
Similarly, the variable 1/r rather than the radial coordi-
nate r represents the lunar parallax (after multiplication
with the equatorial radius of the Earth). Clairaut then
manipulates the equation for the radial motion into the
form

d2s

df2 1s5V , with s5
F2

G0~E1M !r
21, (33)

where V is a somewhat messy expression for the solar
perturbation. The parameter F in the definition of s is a
constant of motion that comes from the integration of
the angular motion.

The motion of the perigee is taken into account from
the very start, by inserting

r5
k

11« cos mf
. (34)
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The distance k and the rate m,1 will somehow emerge
from solving Eq. (33). V is now expanded as a trigono-
metric series of f, since the time is everywhere ex-
pressed as a function of f with the help of a formal
solution for the equation of the angular motion. The
constant F turns out to be the average angular momen-
tum of the Moon, with F5nk2.

The perturbation V acts like a feedback mechanism
for the harmonic oscillator on the left-hand side of Eq.
(33) and leads to a resonance of finite amplitude for all
frequencies other than 1 that appear on the right-hand
side of Eq. (33). Any possible excitation at the fre-
quency 1, however, such as would be caused by the pure
Kepler motion, will cause a shift in frequency from 1 to
m rather than an amplitude that goes to `.

The terms of order 0 in the perturbation expansion of
s cancel one another, provided

n2k35G0~E1M !S 12
m2

2 D , m2512
3
2

m2. (35)

The first condition indicates that the rotating ellipse is
shrunk compared to the unperturbed Kepler ellipse,
which is to be expected because of the additional repul-
sion due to the Sun. The second condition confirms
Newton’s result (23) that m21>23m2/4.

E. The evection and the variation

A first-order approximation yields the correction to
the rotating Kepler ellipse (34),

k

r
511« cos mf1d cos~222m2m!f

1b cos 2~12m !f1a cos~222m1m!f , (36)

where

d>
15
8

«m , b>m2, a>2
5
8

«m2. (368)

The lunar longitude f as a function of time becomes

f5nt12« sin mnt12d sin~2n22n82mn !t

1S b1
3m2

8 D sin 2~n2n8!t

1
2a

3
sin~2n22n81mn !t , (37)

to the lowest order with respect to m . One recognizes
the anomaly, which has the amplitude 2«, the evection
comes with a factor 2d515«m/4, and the variation has
the amplitude 11m2/8.

High-precision data are customarily expressed in sec-
onds of arc, but we shall stick with the round figures in
minutes of arc because they are more easily remem-
bered. Therefore 2«>3758 and m51/13.3679>3/40 with
the help of Eq. (368) lead to (b13m2/8)5268309 and
2d5528369, instead of 408 and 758 for the observed
variation and evection. Thus the first-order corrections
yield only two-thirds of the observed values.
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F. Accounting for the motion of the perigee

The complete first-order expression (36) for the in-
verse radius k/r as a function of f is now inserted into
the radial equation (33) to get the corrections of second
order. In trying to cancel out all the terms proportional
to cos mf, one now obtains

m2512
3
2

m22
225
16

m3. (38)

The second-order correction to m is, therefore,
225m3/32, compared to the first-order result 3m3/4 of
Newton. With 225/32>7 and m>3/40, the second term
constitutes 7/10 of the first.

After all this work, Clairaut and d’Alembert were
able to account for 85% of the motion of the lunar peri-
gee, compared to Newton’s 50%. We have to remind
ourselves that the Greeks knew the correct value em-
pirically to better than four decimals. Nevertheless, this
work of the two French academicians convinced every-
body that Newton’s universal gravitation should be suf-
ficient to explain all the motions of the Moon around the
Earth. It also suggested that a perfect fit with the obser-
vations would be hard to accomplish and could be far
down the road.

G. The annual equation and the parallactic inequality

The algebraic expansion (36) provides a tool with
which the individual terms in the lunar motion can be
derived separately. Brahe’s annual equation (see Sec.
V.F) was found to have a coefficient 2138, whereas the
observed value was only 211889. The negative sign in-
dicates that the Moon falls behind in spring and catches
up in fall.

A correction of similar origin arises from the octupole
term in the expansion (31) for the perturbation of the
Sun. This correction can be singled out because its coef-
ficient has a factor a/a8. The period is the synodic
month; such a motion was first noticed by Tobias Mayer
(see next section). The calculation yields 739 for the am-
plitude of this ‘‘parallactic inequality’’ in lowest order,
whereas the complete value is 1259. Again, we are short
by almost a factor of 2.

If the theory for this inequality could be improved,
the ratio a/a8 could be obtained from the lunar orbit
and, therefore, the solar parallax from the well-known
ratio Earth-radius/a . In this manner Tobias Mayer
found 8.69, which differs insignificantly from the modern
value of 8.89. A better value for the parallactic inequal-
ity, however, is not easy to tease out of the observations.
The astronomical unit a8, the fundamental measure of
length in the universe, is better found by other observa-
tions, such as the transits of Venus over the disc of the
Sun.

Such transits occur only every 120 years, and then
they happen in pairs eight years apart, such as 1761 and
1769 (see Woolf, 1959). The French Academy organized
a large enterprise in 1761 which failed, however, due to
bad luck and the great war between France and England
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that spread over the whole globe. (This important event
was known as the French-Indian wars in America and
led to the ouster of the French from Canada.) The sec-
ond opportunity in 1769 was more carefully planned and
profited from some lucky breaks, such as Captain
Cook’s discovering Tahiti just in time, and the great Eu-
ler himself observing both contacts from a station near
St. Petersburg. But even after discarding the more
doubtful observations, the final results still varied be-
tween 8.59 and 8.99 (Newcomb, 1891).

H. The computation of lunar tables

The simple results of the preceding sections demon-
strate that the theory had to be greatly refined before
complete agreement with the observations could be
achieved. The lunar motions were represented as trigo-
nometric series that involved the combination of four
angles. The coefficients in these expansions depended
on a very small number of parameters, but all through
the 18th century the theory was not good enough to
carry out the required computations.

Good predictions for the lunar position in the sky
were necessary as a help in navigating across the oceans,
since mechanical clocks did not run reliably for several
weeks or even months without interruption. The exis-
tence of the trigonometric series became an accepted
result of the general theory. But the values of the coef-
ficients were obtained from fitting the observations,
rather than working out any algebraic formulas in terms
of the few parameters.

Thousands of lunar positions were provided by the
British Astronomers Royal, starting with Flamsteed, fol-
lowed by the all-round genius Halley, then Bradley, the
discoverer of the aberration of light and the nutation of
the Earth’s axis, and finally Maskelyne, who tested all
kinds of new clocks against celestial observations. The
Continental astronomers also made many observations
in the sky, but they did not accumulate the long runs of
measurements with the same instruments under similar
conditions. A complete review of all the available data
concerning the motion of the Moon was given by New-
comb (1878, 1912).

Although Euler (1746) had already published some
tables, and Clairaut (1754) as well as d’Alembert (1756)
followed a few years later, it was Tobias Mayer, profes-
sor of astronomy at the University of Goettingen, who
set the new standards. The claim that his table of 1752
fitted the observations within at most 18, was reluctantly
confirmed by his colleagues. After his death, his theory
was published in 1767, and his improved table appeared
in 1770 with a preface by Maskelyne. Meanwhile his
widow was awarded 3000 pounds by the British Parlia-
ment in 1763 to recognize her husband’s ability to ‘‘Dis-
cover the Longitude at Sea,’’ while Euler got 300 pounds
for helping Tobias Mayer. Very entertaining accounts of
the competition between the Moon and the mechanical
clock have been published recently by Andrewes (1993)
and Sobel (1995).
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Mayer had required 14 linear combinations of angles
in the expansion of the Moon’s longitude and identified
8 more of them that were too small for the precision of
his table. Charles Mason published Lunar Tables in
Longitude and Latitude According to the Newtonian
Laws of Gravity in 1787, using all 20 combinations. (In
1763, upon the request of the Astronomer Royal,
Nathaniel Bliss, he had gone with Jeremiah Dixon to the
American colonies in order to survey the boundaries be-
tween Pennsylvania, Maryland, Delaware, and Virginia;
a fictional account of this adventure by Thomas Pynchon
appeared in 1997 under the title Mason & Dixon.) There
followed the Austrian Bürg in 1806, who listed 28 com-
binations in his table, although there were really 40
terms in longitude because both the parallactic inequal-
ity and the variation depended on the mean elongation
D5l2l8. The last in this roster is the French academi-
cian Burckhardt in 1812, who used 36 combinations of
angles.

The comparison of individual tables grew more com-
plicated, and the search for the explanation of any dis-
crepancies became more scientific. Methods of least
squares were used for judging the quality of the last two
tables and for finding the best values for the mean mo-
tions and the so-called epochs, i.e., the value of the rel-
evant angles at some arbitrary time such as midnight
before January 1, 1801. The root of the mean-square
deviation went down to 69 of arc, although exceptionally
an individual deviation might reach almost 609. The co-
efficients in the trigonometric series for the longitude of
the Moon were given to the tenth of a second of arc. The
observations were still ahead of the theory.

I. The grand synthesis of Laplace

Pierre Simon Laplace (1749–1827) is a well-known
figure in the French scientific pantheon, not necessarily
for his many scientific achievements, but rather for his
philosophical approach to them and for his influence on
present-day institutions in France. Nevertheless, with his
monumental four-volume work Traité de Mécanique Cé-
leste, divided into ten books and published from 1799 to
1805 (the fifth volume, covering history and some gen-
eral physics, followed 20 years later), Laplace validated
Newton’s claim that all of astronomy in the solar system
can be reduced to the three laws of motion and universal
gravitation with the inverse square of the distance.

The whole work is characterized by its precise as well
as concise language and its systematic buildup, starting
from general principles and ending with the fine details
of comparison with the observations. An abbreviated
version with the title Mechanism of the Heavens was
published in 1831 by Mary Sommerville, from a Scottish
middle-class family. It contains a discussion of lunar
theory far beyond what is offered in this review. She
became well known and well established, but she could
not be elected to the Royal Society of London. Instead
the Fellows decided to have her marble portrait made by
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Francis Chantrey and to have it stand in Burlington
House, their headquarters.1

English-speaking readers have been blessed with a
unique translation of the first four volumes of Laplace’s
treatise. A self-made businessman from Boston,
Nathaniel Bowditch (1773–1838), not only translated
but also added numerous comments to explain with in-
finite patience exactly what Laplace was doing. The re-
sulting four tomes (Bowditch, 1829, 1832, 1834, and
1839) contain about two and a half times as many pages
as the original and constitute a prime document of sci-
ence in the early United States. Its author also wrote a
voluminous New American Practical Navigator that
went through dozens of editions, and he received many
honors for his efforts from academic institutions the
world over.

The developments in Mécanique Céleste do not follow
some general method, nor do they pretend to provide a
complete survey of the whole field, but they cover many
of the outstanding problems: the shapes and the rotation
of the bodies in the solar system, including the tides in
the ocean and in the atmosphere, as well as the rings of
Saturn, the motion of the individual planets and their
satellites with all the mutual perturbations and reso-
nances, and finally a discussion of the comets, but ignor-
ing the recent discovery of the asteroids. Laplace natu-
rally prefers to present much of the successful work that
he had done in the preceding 30 years. He tries to push
every topic to a perfect agreement between observation
and theory, and he succeeded in convincing the world
that such a goal could be attained. He backed up this
claim with sophisticated arguments from his theory of
probability.

J. Laplace’s lunar theory

Book VII in the third volume treats the ‘‘Theory of
the Moon.’’ After 12 pages of general introduction,
there follow 123 pages of hard analysis. Bowditch had to
expand them to 331 pages in order to accommodate all
his explanatory remarks. The spirit is still the same as in
the work of Clairaut and d’Alembert, but the motion in
latitude is taken into account from the start, and many
more terms are included in the trigonometric series. The
basic equations are a fairly straightforward generaliza-
tion of Eq. (33), and demonstrate once more the con-
trast with the various modern approaches.

Starting from polar coordinates (r ,u ,f) for the Moon
with respect to the ecliptic, the equations of motion are
written in terms of

u5
1

r cosu
, s5tanu , f , (39)

where the true longitude f serves as the independent
variable. The differential equations for u and s look
almost exactly like Eq. (33). Laplace used the ‘‘variation

1I happen to own the copy of Mechanism of the Heavens that
Sommerville dedicated to the sculptor Chantrey.
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of the constants’’ of Lagrange in book VI, the first part
of the third volume, which is devoted to the perturba-
tions in the planetary orbits. But he preferred the more
primitive approach of Clairaut and d’Alembert for the
Moon.

The starting point for Laplace’s lunar theory is a
modified Kepler motion in three dimensions. In addition
to the motion of the perigee m, there is now a motion of
the node n already in the lowest approximation,

u5
A11s21«0 cosm~f2v!

k
, s5g0 sinn~f2Q!.

(40)

The eccentricity «0 and the inclination g0 differ some-
what from the earlier definitions for « and g. Together
with the angles v and Q they are the initial conditions
for the integration of the equations of motion.

The lunar motion now looks like a dynamic problem
of two oscillators with feedback mechanisms. The fre-
quency has to shift for both the radial motion and the
motion in latitude because otherwise there would be an
infinite resonance with the motion in longitude and lati-
tude. The lowest approximation for m is again given by
Eq. (35), while the lowest approximation for n is ob-
tained from Eq. (40) and yields Newton’s result (24), n
21>13m2/4.

The further development of the lunar motion at a
right angle to the ecliptic follows the same pattern as the
earlier calculations in Sec. VII.E. In complete analogy to
the evection, the first-order corrected formula for the
latitude becomes

s5g0 sin n~f2Q!2
3m

8
g0 sin@n~f2Q!

22~12m !f!], (41)

where we have kept only the lowest power of the m
5n8/n . In spite of its similar origin, the evection term in
Eq. (36) is five times larger with a coefficient 15/8 in a
rather than the libration with 3/8 in Eq. (41).

Since g0 corresponds to 5°1153118, and 3m/8
>(3/8)(3/40)59/320, this change in latitude amounts to
about 98, which is the observed value. Equation (41) can
also be interpreted as a motion of the nodes by finding
the longitude f when the latitude s vanishes. Thus Q is
found to vary as (3m/8)sin 2D , i.e., with an amplitude
of 1°37, in good agreement with the observations of
Brahe (cf. Sec. V.F). Again we find that the motion per-
pendicular to the ecliptic comes out quite well in the
lowest significant approximation, in contrast to the mo-
tion in the ecliptic.

A great deal of care is necessary if the method of
Laplace is to be carried to fourth or even fifth order.
The details in Mécanique Céleste are not always easy to
follow because the numerical value for the most impor-
tant (and best known) parameter is used, namely, the
ratio of the mean motions m5n8/n>3/40, or any func-
tion of it. Also, there are subtle arguments of what we
call ‘‘renormalization’’ because the starting parameters
in the theory are not always identical with the observed
ones.
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The work of Laplace had profound philosophical im-
plications for the sciences because he was able to
achieve what we would call today a ‘‘grand unification’’
for everything that was observed in the solar system.
Since the main problem in lunar theory requires very
few external parameters plus some initial conditions, it
affords an extremely stringent test for both the underly-
ing physics and the mathematical methods. The agree-
ment with the observations of Bradley and Maskelyne
averages around one arcsecond. Nothing of this kind
had ever been achieved before!

Laplace also investigated the effect of the planets on
the Moon’s motion and found that it is mostly indirect,
i.e., through the motion of the Sun around the center of
mass of the solar system. Halley had discovered that the
Moon’s motion was accelerating slowly, and Laplace
found the cause in the variation of the Earth’s eccentric-
ity. Tobias Mayer had found an inequality in longitude
that depended only on the position of the node, and
Laplace now attributed it to the flattened figure of the
Earth, whose value he determines thereby as 1/305.

The great endeavor of Laplace has left a deep mark
on our view of nature, but his methods for solving the
equations of celestial mechanics are no longer used. The
many technical inventions that led to the success of this
project have either been abandoned as impractical or
become part of the common background in this field.
The guiding spirit of this great enterprise has influenced
many of our beliefs, but the huge bulk that supported
the whole structure is mostly forgotten.

VIII. THE SYSTEMATIC DEVELOPMENT OF LUNAR
THEORY

A. The triumph of celestial mechanics

The 19th century brought many new problems in ce-
lestial mechanics because of three major discoveries: (i)
the major planet Uranus in 1781, (ii) four large asteroids
from 1801 to 1807, and (iii) the last major planet, Nep-
tune, on the basis of the observed perturbations on Ura-
nus and the calculations of Urbain Leverrier and John
Couch Adams in 1846.

The second half of the 19th century brought some
clarification into the many approaches to celestial me-
chanics, particularly in three respects:

(i) one special approach to mechanics, now associ-
ated with the names of Hamilton and Jacobi,
seemed to become dominant;

(ii) the lunar problem served as inspiration for Hill to
invent a completely new foundation;

(iii) the many schemes for constructing approximate
solutions were finally examined from a purely
mathematical perspective by Poincaré.

At the same time, the comparison of the theory with
ever better observations was improved, and the compu-
tations for the ephemerides were made more accurate
and practical.
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Section IX deals with (i) and (iii), because much of
Poincaré’s work in celestial mechanics is directly based
on classical mechanics in the Hamilton-Jacobi version.
By contrast, Hill’s work throws a totally new light on the
motion of the Moon and will be discussed in Sec. X.
These developments, however, began with Lagrange,
who seems to be the first mathematical physicist trying
to find general methods while solving special problems.
Together with his much younger colleague Poisson, he
worked out a general formalism that allowed a clearer
insight into the lunar motion.

B. The variation of the constants

Euler’s first theory (1753) for the motion of the Moon
was only mentioned in passing in Sec. VII.B. As in so
many other instances, Euler was far ahead of his time,
but he followed up on his new approaches only to the
extent required to solve the problem at hand. Some of
his most interesting results are found in the Appendix.

Rather than solving the equations of motion in any of
the various coordinate systems, Euler’s simple idea was
to express the rate of change with time, for any of the
osculating elements in Sec. V.B. The time derivatives of
the parameters a , «, g, l 0 , g , h for the Moon are given
directly in terms of the perturbation by the Sun. Thanks
to his virtuoso skills in geometry and analysis he was
able to carry out this program.

Giuseppe Lodovico Lagrangia (1736–1813) spent his
first thirty years in his native Torino, where he started
most of his scientific work. He founded a new journal
together with some like-minded friends to publish his
prodigious output. In 1766 he was called to Berlin as the
successor of Euler, who was moving back to St. Peters-
burg. Thanks to the eminence of Euler and Lagrange,
Frederick the Great of Prussia succeeded in putting his
Royal Academy on the map. Some 147 years later, the
same academy offered its senior position to the 33-year-
old Albert Einstein, a Swiss citizen (like Euler) who had
spent some of his youth in Italy, to complete the anal-
ogy.

Although he got an early start on his seminal ideas, it
took Lagrange more than 50 years of hard work to cast
them into the simple shape that we learn about in clas-
sical and quantum mechanics. This long process began in
1774 with his research on the secular variation of the
nodes and inclinations of planetary orbits. The adjective
secular refers to a slow change in the speed of the mean
motion. Applying this research to lunar theory, he intro-
duced the angular momentum vector (in modern no-
menclature) of the Moon with respect to the Earth, and
calculated its time rate of change when the lunar orbit is
assumed to be circular in lowest approximation.

The fruit of this approach came two years later when
Lagrange (1776) derived his famous theorem on the sta-
bility of the solar system. The semi-major axis a8 for
some particular planet like the Earth is given by the
total energy of its motion around the Sun, 2G0SE/2a8.
The only reason for the change of a8 is the interference
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of the other planets. Again we insert in lowest approxi-
mation the simple Kepler motions for each planet.

The secular variation of the semi-major axes had been
calculated earlier by Euler, who got rather large values.
Laplace then carried Euler’s computation one step fur-
ther and showed that there was a subtle compensation of
the two lowest orders. With Lagrange’s simple expres-
sion for da8/dt it became almost obvious that there was
no secular, i.e., constant as opposed to periodic, term. In
Jacobi’s words, the proof of Lagrange was accomplished
with one stroke of his pen (Jacobi, 1866).

In 1808 Poisson showed the absence of secular terms
in second order provided there is no resonance between
any two planets, i.e., there is no linear relation with
simple integers between the mean motions of any two
planets. Poincaré (1899) pointed out in Chapter XXVI
that Poisson excluded only terms like Bt from the
change of the semi-major axis, but admitted terms like
At sin(at1b). Stability to second order only implies the
return to the original values, but allows arbitrarily large
excursions in between. It was finally shown that secular
terms could no longer be avoided in third order (see
Tisserand’s discussion in Chapter XXV of Volume I).

From 1781 to 1784 Lagrange generalized his method
by including what we now call the Runge-Lenz vector
[Eq. (14)]. The change of these quantities due to pertur-
bations leads to a change in a , «, g and the angles h , g ,
l 0 . In this roundabout way, Lagrange calculated the
time rate of change for the Kepler parameters a , g, etc.
Lagrange made a major effort to check whether his
scheme gave the observed values for the planetary mo-
tions, to the point of critically evaluating various observ-
ing instruments. Obviously, the separation between ob-
servation and theory was not yet as wide as it is today.

During the same years Lagrange wrote his magnum
opus, Analytical Mechanics, the founding document for
modern theoretical physics. The central idea of
Lagrange’s approach was expressed in the ‘‘avertisse-
ment’’ (i.e., preface), where he says ‘‘There are no fig-
ures in this treatise. The methods that I propose require
neither constructions nor mechanical reasoning, but only
algebraic operations that are bound to a regular and uni-
form procedure. People who like analysis will see with
pleasure that mechanics has become a part of it, and they
will be grateful to me for having expanded its range.’’

C. The Lagrange brackets

In 1787 Lagrange joined the Royal Academy of Sci-
ences in Paris where he was treated with the utmost
respect to the point of being offered the doubtful privi-
lege of an apartment in the Louvre. In the same year the
Analytical Mechanics was published, and Lagrange spent
most of his remaining 25 years in writing mathematical
monographs, typically on the solution of algebraic equa-
tions and on the theory of functions. But he also worked
hard on a second and expanded edition of the Analytical
Mechanics, of which the second volume was not quite
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completed when he died. In 1808 he made a major
breakthrough by finding a general method for solving
problems in mechanics.

Lagrange does not speak of the momentum, but al-
ways of the velocity; even today mathematicians usually
do not make that distinction, although it is already quite
clearly stated on the very first page of Newton’s Prin-
cipia. In gravitational problems the distinction is some-
what artificial, however, because the mass of any celes-
tial body always drops out of its equation of motion
since the inertial mass equals the gravitational mass.

Lagrange’s reasoning can be best explained with the
help of the Moon’s motion around the Earth. If there is
no perturbation, the complete solution of Kepler’s prob-
lem would be a set of functions,

x~a ,« ,g ,l 0 ,g ,h ;t !, y~a , . . . ,h ;t !, z~a , . . . ,h ;t !,

ẋ~a ,« ,g ,l 0 ,g ,h ;t !, ẏ~a , . . . ,h ;t !, ż~a , . . . ,h , ;t !.
(42)

The coordinates and velocities depend on time in two
ways: through the explicit occurrence of t in the Kepler
motion as represented in Eq. (42), and through the
change of the parameters a , «, g, l 0 , g , h because of the
perturbation.

Since the coordinates (x ,y ,z) are explicitly known as
functions of the parameters a , . . . ,h and t , the perturb-
ing potential W(x ,y ,z ,t) is now viewed also as a func-
tion of these parameters. By a sequence of simple ma-
nipulations, Lagrange manages to write the equations of
motion in the following form:

$a ,a%
da

dt
1$a ,«%

d«

dt
1•••1$a ,h%

dh

dt
52

]W

]a
,

$« ,a%
da

dt
1$« ,«%

d«

dt
1•••1$« ,h%

dh

dt
52

]W

]«
, (43)

and four more equations for g, l 0 , g , h , where the
Lagrange bracket $« ,a% is defined by

$« ,a%5m0S ]~x , ẋ !

]~« ,a !
1

]~y , ẏ !

]~« ,a !
1

]~z , ż !

]~« ,a ! D , (44)

with

]~x , ẋ !

]~« ,a !
5

]x

]«

] ẋ

]a
2

]x

]a

] ẋ

]«
.

The 636 matrix of the Lagrange brackets is regular,
because it is basically the square of the Jacobian matrix
for the functions (42). Calculating the individual brack-
ets, however, requires all of Lagrange’s computing skills.
Most importantly, he shows that their partial derivative
]/]t vanishes. Each bracket is a combination of the six
parameters a , «, g, l 0 , g , h ; but t does not occur explic-
itly in them, even though it is present in the functions
(42).

The 636 matrix of the Lagrange brackets turns out to
be so simple that the linear equations (43) can be in-
verted to yield
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da

dt
52

2
na

]W

]l 0
, (45)

dl 0

dt
5

2
na

]W

]a
1

12«2

na2«

]W

]«
, (46)

d«

dt
5

A12«2

na2«

]W

]g
2

12«2

na2«

]W

]l 0
, (47)

dg

dt
52

A12«2

na2«

]W

]«
1

cos g

na2A12«2 sin g

]W

]g
, (48)

dg

dt
5

1

na2A12«2 sin g

]W

]h
2

cos g

na2A12«2 sin g

]W

]g
,

(49)

dh

dt
52

1

na2A12«2 sin g

]W

]g
. (50)

The reader should notice that the parameters a , «, g
change with time only through the partial derivatives of
the perturbation W with respect to the angles l 0 , g , h .
These derivatives are necessarily periodic with time, so
that a , «, g are subject only to periodic changes in first
order. Lagrange’s theorem on the invariance of the
semi-major axes (the stability of the solar system) is a
special case of this conclusion.

For many bodies in the solar system the eccentricity «
and the inclination g are small. In these cases the singu-
larities on the right-hand sides of Eqs. (46) through (50)
can be avoided if the parameter pairs (« ,g) and (g ,h)
are replaced by (« cos g,« sin g) and (g cos h,g sin h).
Poincaré will use this idea when he discusses the conver-
gence of power-series expansions in these parameters.
The main task now becomes to write the perturbing po-
tential W(x ,y ,z ,t) as a function of parameters such as
our (a ,« ,g ,l 0 ,g ,h).

D. The Poisson brackets

The 27-year-old Poisson was inspired by the paper
that the 72-year-old Lagrange read before the French
Academy of Sciences. Within two months Poisson had
found a significant shortcut by starting with the opposite
of Eq. (42): the constants of motion, say our usual col-
lection for the Kepler problem, are given explicitly in
terms of the Cartesian coordinates (x ,y ,z) and their ve-
locities ( ẋ , ẏ , ż).

It follows then with relative ease that

da

dt
52@a ,a#

]W

]a
2@a ,«#

]W

]«
2•••2@a ,h#

]W

]h
,

d«

dt
52@« ,a#

]W

]a
2@« ,«#

]W

]«
2•••2@« ,h#

]W

]h
, (51)

and similar equations for the remaining four parameters.
The Poisson bracket @A ,B# between any two functions
A(x ,y ,z , ẋ , ẏ , ż) and B(x ,y ,z , ẋ , ẏ , ż) is defined as
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@A ,B#5
1

m0
S ]~A ,B !

]~x , ẋ !
1

]~A ,B !

]~y , ẏ !
1

]~A ,B !

]~z , ż ! D . (52)

The 636 matrix of the Poisson brackets is the inverse of
the 636 matrix of the Lagrange brackets. Indeed, the
Poisson brackets for the Kepler problem are exactly the
coefficients in the equations (45)–(50) of Lagrange.

Lagrange did not live long enough to see Poisson
brackets steal the show from his own brainchild. He had
tried to grasp the most basic elements of mechanics, and
he almost succeeded, with the help of his method of
virtual displacements and of his general equations of
motion in terms of the kinetic and potential energies. In
the process, classical mechanics became an ever more
abstract branch of science. In particular, lunar theory
after Lagrange turned more and more into a competi-
tion among different computational schemes.

E. The perturbing function

In order to take advantage of our new equations of
motion, the perturbing potential W(x ,y ,z ,t) has to be
rewritten. The Cartesian coordinates (x ,y ,z ,) have to
be expressed as functions of the Kepler parameters
(a , . . . ,h) and time t as in Eq. (42).

This messy calculation is carried out in exemplary
fashion by Delaunay (1860, 1867; see Sec. IX.B). The
parameters «>1/18, ḡ5sin g/2>1/22, and «8>1/60 are
considered as first-order quantities, whereas a/a8
>1/400 is treated as second order. All terms in W up to
eighth order are listed. Moreover, terms whose argu-
ments contain l 8 but not l are carried to ninth order,
while terms containing neither l nor l 8 are listed to
tenth order. These terms have a slow periodic variation,
so that their integration introduces small denominators.

The result of this computation is given explicitly on
pages 33–54 of the first volume. It forms the basis for
the remaining 1750 pages, which will be discussed in the
next chapter. Here, we shall copy some of the very
lowest-order terms,

W52
G0Sa2

a83 S 1
4

1
3
8

«22
3
8

g21
3
8

«822
1
2

« cos l

1
3
4

cos 2~h1g1l 2F!1
15
8

«2 cos 2~h1g2F!

1
3
8

g2 cos 2~h2F! D , (53)

where we have set the Sun’s mean longitude l 81g8
1h85F .

The general term contains a cosine of the argument in
the form

j1~h1g1l 2h82g82l 8!1j2l 1j3l 81j4~g1l !.
(54)

Its coefficient is a polynomial, where the individual term
is a rational number that gets multiplied with
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G0Sa2

a83 ~a/a8!k1«k2«8k3 sink4~g/2!. (55)

The coefficient j1 and all the exponents k are >0. The
following relations hold: j1 and k1 are simultaneously
even or odd; j4 and k4 are both even; k2 , k3 , k4 are
larger, respectively, than uj2u, uj3u, uj4u by an even num-
ber >0.

Any physical understanding of the results is possible
only if the individual terms in the expansion of W can be
tracked down to the original expression for the solar
perturbation. Looking at the 22 pages of Delaunay’s ex-
pansion, it is clear that only the very lowest terms, such
as Eq. (53), can be identified and interpreted. Unfortu-
nately, it lies in the very nature of modern theoretical
physics that such obvious reductions are no longer fea-
sible. Our gain in precision does not necessarily come
with a better understanding.

F. Simple derivation of earlier results

Some of the principal perturbations in the lunar tra-
jectory were calculated in the preceding section just as
they were explained for the first time by the French
mathematicians in the 18th century. These same results
can now be obtained much faster with the help of
Lagrange’s method. The expansion (53) has to be in-
serted into the equations of motion (45)–(50), which
then have to be integrated. Since the mean motion n is
expressed through Kepler’s third law [Eq. (15)], i.e., n
5AG0(E1M)/a3, the mean anomaly at epoch has to be
redefined,

l 5nt1l 05E ndt1l 1 , (56)

in order to avoid terms of the type t sin l ; l 1 serves as
the new Kepler parameter.

From the first line in Eq. (53) we get immediately

dl 1

dt
52

7
4

n82

n
,

dg

dt
5

3
2

n82

n
,

dh

dt
52

3
4

n82

n
, (57)

in agreement with Newton’s results (23) and (24). The
correction to the longitude l 1g1h , i.e., d(l 11g1h),
is found to decrease at a rate n82/n . It is directly related
to a renormalization of the average distance of the
Moon from the Earth, and to correction (35) of Kepler’s
third law.

The differential equations (45)–(50) are solved in low-
est approximation by integrating the right-hand sides
under the assumption that a , «, g have constant values,
while l , g , h increase at a fixed rate with time. The first
term in the second line of Eq. (53) yields Tycho Brahe’s
variation. The second term in the second line of Eq. (53)
yields Ptolemy’s evection, and the third line in (83) gives
the lowest-order correction (41) to the motion in lati-
tude.

Lagrange’s equations of motion (45)–(50) can also be
used to find the corrections in the Moon’s motion for the
nonspherical nature of the Earth. The perturbing poten-
tial depends on the declination of the Moon with respect
to the Earth’s equator and on the geophysical param-
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eters in the Earth’s gravitational field, as first established
by Clairaut (1743). The answers were finally figured out
by Laplace, who found the correction db5
289.382 sin(l 1g1h) in latitude and dl579.624 sin h
in longitude. The first had been observed by Tobias
Mayer without interpretation, and the second was dis-
covered subsequently by Bürg and Burckhardt. This
problem plays a central role in our times for the trajec-
tories of artificial satellites around the Earth (see end of
Sec. XI.E).

G. Again the perigee and the node

The improved values of Clairaut and d’Alembert for
the motions of the perigee and of the node can be ob-
tained rather easily from Lagrange’s equations (47)–
(50) in the following ingenious manner. Only the terms
proportional to «2 and g2 in the perturbation (53) are
taken into account. If the longitude of the perigee is
called v5g1h , one finds that

d«

dt
52

3m2

4
5« sin 2~l82v!,

dv

dt
5

3m2

4
„115 cos 2~l82v!…, (58)

dg

dt
52

3m2

4
g sin 2~l82h !,

dh

dt
52

3m2

4
„12cos 2~l82h !…, (59)

where l85l 81g81h8 is the mean longitude of the Sun.
We shall assume that l85n8t1l08 where n8 is known.
Some small coupling between these two sets of equa-
tions has been neglected. The two pairs of equations
were found by Puiseux in 1864 to be completely inte-
grable, with solutions that use only elementary func-
tions.

Rather than displaying the full solutions, it is sufficient
to say that h , the longitude of the node, is found to
increase on the average at the rate n8(12A113m/2),
whereas the longitude of the perigee v5g1h increases
at the rate n8(12A(113m)(129m/2)) where m
5n8/n . When these expressions are expanded in powers
of m , one finds

ḣ52n8S 3m

4
2

9m2

32
1¯ D ,

ġ1ḣ51n8S 3m

4
1

225m2

32
1¯ D . (60)

Remarkably, these are the correct values for the first
two terms of the expansions in powers of the relevant
parameter m [cf. Eq. (33)].

In his discussion of Newton’s lunar theory, Tisserand
(Vol. III, p. 44) mentions the collection of Newtonian
manuscripts that the Count of Portsmouth left to the
University of Cambridge. A committee, including
Stokes and Adams, examined the papers and found im-
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portant results in only three areas: lunar theory, atmo-
spheric refraction, and the form of a solid of least resis-
tance. Newton had investigated the motion of the
perigee for an orbit of small eccentricity, and had for-
mulated two lemmata as if for a fourth edition of the
Principia. They are equivalent to the second equation
(58), except that the coefficient 5 becomes 11/2 for rea-
sons that are not well understood. But even so, there is a
significant improvement for the motion of the perigee
over Newton’s earlier value. (See the comments of
Chandrasekhar, 1995.)

IX. THE CANONICAL FORMALISM

A. The inspiration of Hamilton and Jacobi

William Rowan Hamilton (1805–1865) is a romantic
figure in the best tradition of the early 19th century,
supremely gifted and at times deeply unhappy. Yet his
enormous talents were widely appreciated, and he re-
ceived many honors, such as being at the head of the
first 14 foreign associates in the U.S. National Academy
of Sciences at its founding in 1863. His unique achieve-
ment in physics was to recognize the deep analogy be-
tween optics and mechanics (see Hamilton’s Mathemati-
cal Papers, 1931 and 1940).

The analog of Fermat’s principle in optics is the varia-
tional principle of Euler and Maupertuis in mechanics
(Euler, 1744). The relevant characteristic function is the
integral of the momentum at constant energy E5T1V
along a trajectory from the initial point (x0 ,y0 ,z0) to
the endpoint (x ,y ,z). But in 1834, Hamilton considered
the variation for the more general integral of L5T2V
over the trajectory from the initial spacetime
(x0 ,y0 ,z0 ,t0) to the final (x ,y ,z ,t). He also wrote down
the first-order partial differential equation for these
characteristic functions. In 1837 he had an extended cor-
respondence with Lubbock on the motion of the Moon,
although his interests remained mostly in optics.

Carl Gustav Jacob Jacobi (1804–1851) was Hamil-
ton’s equal in mathematical talent, but he seems to have
been better organized and more effective. In mechanics,
he started in 1837 where Hamilton left off and created a
whole body of theory that has become the foundation of
the modern approach to classical mechanics. It is well
explained in his famous Vorlesungen über Dynamik,
which he held 1842–43 in Königsberg, now Kaliningrad.
They were published by Clebsch only in 1866 together
with some further well-written, but so far unpublished,
notes on the theory of perturbation.

Jacobi’s main emphasis was on obtaining the charac-
teristic function from its first-order partial differential
equation, the classical analog of Schrödinger’s equation.
This first-order partial differential equation is solved ex-
plicitly whenever there is a sufficient number of con-
stants of the motion, e.g., in the Kepler problem, and the
solution yields the orbit directly in terms of the relevant
parameters. The procedure is explained in all the stan-
dard textbooks on classical mechanics with various de-
grees of abstraction.
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The main purpose of present-day attention to
Hamilton-Jacobi theory is the connection between clas-
sical and quantum mechanics. This possibility was not
foreseen in the first half of the 19th century. The theory
found relatively few applications and was probably re-
sponsible for some illusions that still persist. Indeed Ja-
cobi and all his successors (with the important exception
of Poincaré) seem to imply that most dynamic systems
are integrable, i.e., they have as many integrals of mo-
tion as degrees of freedom, if you are only smart enough
to find them.

Although there is some merit in this idea for the
double-planet Earth-Moon moving around the massive
Sun, the construction of the required constants of mo-
tion cannot be accomplished by some miraculous appli-
cation of Hamilton-Jacobi theory. Although canonical
transformations go back to Hamilton and Jacobi, their
practical use in the service of perturbation theory cannot
be traced back to them.

B. Action-angle variables

The first large-scale application of canonical transfor-
mations was worked out by Charles-Eugène Delaunay
(1816–1872), a prominent engineer, mathematician, as-
tronomer, professor, and academician. In 1846 he pro-
posed a ‘‘New Method for the Determination of the
Moon’s Motion’’ on which he worked for the following
20 years all by himself while teaching and writing vari-
ous textbooks and monographs. The detailed record of
these heroic labors is contained in two monumental
tomes, each over 900 pages, published in 1860 and 1867.

There is no reason to believe that Delaunay knew
anything about the work of Hamilton and Jacobi, and
yet there is no better example of the use of canonical
transformations in perturbation theory. Delaunay wrote
with great precision and clarity, with the necessary detail
to check on his computations. And indeed, that has been
done with the tools of both the 19th and the 20th cen-
tury.

In a major change, Delaunay describes the pure
Kepler motion of the Earth-Moon system in terms of an
angular momentum mL instead of the usual semi-major
axis a . The energy becomes

2
G0EM

2a
52m

~G0EM !2

2m2L2 , where m5
EM

E1M
.

(61)

With a few obvious modifications, one recognizes the
energy levels of the hydrogen atom.

Two minor changes involve the angular momenta,
mG and mH instead of the eccentricity « and the incli-
nation g,

L5AG0~E1M !a , G5LA12«2, H5G cos g .
(62)

The division of the three angular momenta by the re-
duced mass m simplifies some of the formulas, but we
shall continue to speak about the angular momenta
L ,G ,H . They are paired with the mean anomaly l , the
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distance g from the ascendant node to the perigee, and
the longitude h of the ascendant node from the refer-
ence direction Q in the ecliptic. In modern language, we
have the ‘‘actions’’ L ,G ,H and the angles l , g ,h ; they
are commonly called the Delaunay variables.

The equations of motion now take the standard form
for a perturbed system,

dl

dt
5

]V

]L
,

dg

dt
5

]V

]G
,

dh

dt
5

]V

]H
, (63)

dL

dt
52

]V

]l
,

dG

dt
52

]V

]g
,

dH

dt
52

]V

]h
,

where V is now the kinetic plus potential energy divided
by m,

V52
„G0~E1M !…2

2L2 1W~x ,y ,z ,t !. (64)

Notice that the derivatives in Eq. (63) no longer require
the special precaution of Eq. (56) in order to prevent the
appearance of terms where the time t multiplies a trigo-
nometric function of the angles.

The expansion (53) of W in powers of «, g, «8, and
a/a8 can be used again; indeed, it was worked out by
Delaunay in exactly this form (see Sec. VIII.E). But the
Kepler parameters a , «, g are now expressed in terms of
L ,G ,H ,

a5
L2

G0~E1M !
, «5A12

G2

L2 ,

sin
g

2
5A1

2
2

H

2G
. (65)

Obviously, Delaunay has made a compromise between
two viewpoints: on the one hand, the Kepler parameters
are very helpful in understanding a particular term in V
and estimating its magnitude; on the other hand, the
computations are made easier by the simplicity of Eqs.
(63) compared to Lagrange’s equations (45)–(50).

For the sake of symmetry in the nomenclature, a
fourth degree of freedom is introduced to take care of
the Sun’s motion. Its action variable is called K , and its
angle is k5l 8. A fourth pair of equations will appear in
Eq. (63), and the total potential V will include an addi-
tive term n8K to make sure that the angle l 8 increases
at the constant rate n8. This fourth degree of freedom
does not interact with the other three, but the energy of
the Earth-Moon system depends on time through l 8.
This situation is described nowadays as due to 3 plus 1/2
degree of freedom.

Delaunay uses the expansion of the perturbation W in
Sec. VIII.E. Each term in this trigonometric expansion is
transformed away individually, one after the other, by a
procedure that yields all the higher-order corrections.
The factors (55) determine which of the new terms to
retain and how far to carry the procedure. Although the
whole process is very systematic, it is still beset by many
details that require tremendous attention as well as al-
most infinite patience.
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C. Generating functions

The Swedish mathematician von Zeipel is generally
credited with having developed the use of generating
functions in performing canonical transformations
around 1916, although there were precursors. In his
Ph.D. thesis of 1868, Tisserand discusses Delaunay’s re-
sults in this manner (see Tisserand Vol. III, Chap. 11);
Poincaré also uses generating functions in his Nouvelles
Méthodes as if they were common property.

There is a set of old actions and angles, K , L , G , H ,
and k , l , g , h , and a set of new actions and angles, K8,
L8, G8, H8, and k8, l 8, g8, h8. The generating function
F depends on the new actions and the old angles; the
transformation is given by the formulas

K5
]F

]k
, L5

]F

]l
, G5

]F

]g
, H5

]F

]h
,

k85
]F

]K8
, l 85

]F

]L8
, g85

]F

]G8
, h85

]F

]H8
.

(66)

Naturally, the generating function has to be chosen to
advance the solution of the problem at hand.

In contrast to Delaunay we shall now assume that the
resulting canonical transformation does not differ by
much from the identity. This allows us to transform at
the same time several terms of the type A cos u where A
is a function of the old actions such as Eq. (55), and u is
some linear combination with integer coefficients of the
old angles such as Eq. (54). Thus we start from the
Hamiltonian in the form

V5B~K ,L ,G ,H !1A1 cos u11A2 cos u21¯ .
(67)

where A1 ,A2 , . . . are small compared to B . Then we
construct a generating function as a sum of several
pieces,

F5K8k1L8l 1G8g1H8h1F11F21¯ . (68)

where F1 is designed to take care of A1 cos u1 , and F2 of
A2 cos u2 , etc.

Since the time does not occur explicitly in the old
Hamiltonian V, the new Hamiltonian V8 is obtained
from the old one simply by replacing in V the old actions
and angles by their expression in terms of the new ones.
Equations (66) are applied to Eq. (68) and inserted into
Eq. (67). The choice of the functions F1 , F2 , and so on
is dictated by the requirement that the new Hamiltonian
in terms of the new actions and angles have no more
terms such as A1 cos u1 , A2 cos u2 , etc.

The condition for the vanishing of the term A1 cos u1
in V then yields

F152
A1~L8,G8,H8!sin u1

~ i10v01i11v11i12v21i13v3!
, (69)

and similar expressions for F2 , and so on. The integers
i10 ,i11 ,i12 ,i13 are the same as in u15i10k1i11l 1i12g
1i13h . The v’s are the frequencies of the undisturbed
system and are given by the standard formulas
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v05
]B

]K
5n8, v15

]B

]L
, v25

]B

]G
, v35

]B

]H
.

(70)

This is where the small denominators raise their ugly
heads. With Von Zeipel’s method, one can obtain the
generating function for the lowest-order corrections sim-
ply by looking at the Hamiltonian V. In order to pro-
ceed further, one must expand the transformation for-
mulas from the old action angles to the new ones, to
higher powers in A1 , A2 , etc. The results of these ex-
pansions have to be inserted into Eq. (67), and this last
step will produce additional terms that are independent
of the angles, as well as terms with new combinations of
angles u. But these new terms in the Hamiltonian V8 are
expected to be smaller than those that were eliminated
by the generating function (68). Finally the lunar coor-
dinates have to be expressed in terms of the new action-
angle variables, a big job.

D. The canonical formalism in lunar theory

Delaunay first carries out a set of 57 transformations
and eliminates all terms in the original Hamiltonian of
order lower than four. The detailed record of this major
task makes up the first volume; the main effort goes into
finding the new terms of higher order in the Hamil-
tonian that are produced by the transformations of the
lower-order terms. Since the remaining 440 transforma-
tions no longer interfere with one another, they are
equivalent to a single transformation with a generating
function to lowest order. The numerical accuracy of the
Moon’s longitude is not quite satisfactory at this point,
however, and some of the earlier operations have to be
improved. Therefore, 8 new canonical transformations
are added, for a grand total of 505.

Since the motions of the angles are given by the de-
rivatives (70), the term B(K ,L ,G ,H) in the final Hamil-
tonian is the most important result. Deprit, Henrard,
and Rom of the Boeing Scientific Laboratories in Seattle
reported in 1970 that Delaunay’s final expression for B
has to be corrected by subtracting the single term
(5/8)n82a2m sin2(g/2)«82, where the lowest term in per-
turbation (53) is (1/4)n82a2. The effect of this correction
on the rate of change with time for the angles l 0 , g , h in
the original Kepler problem can be obtained directly
from Eqs. (46), (48), and (50). For the motion of the
node, the correction is

D
dh

dt
5

5
16

n82

n
m«82, (71)

whereas the correction vanishes for the motion of the
perigee, d(g1h)/dt . This correction amounts to about
1025 of Newton’s result 23n82/4n .

The same authors published in 1971 a more detailed
comparison of Delaunay’s results with their own compu-
tations, which were carried to higher order and will be
discussed in Sec. X. Delaunay’s final expression for the
Moon’s longitude is a trigonometric series in the angles
(54) of 460 terms covering 53 pages, while his expression
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for the latitude includes the angles of 423 terms covering
an additional 52 pages. The coefficient for each term is a
polynomial in m5n8/n , «, sin(g/2), «8, a/a8, all with
rational numbers. 49 corrections in these polynomials
were necessary for the longitude and 45 for the latitude.
An earlier suggestion by Andoyer (1901) was confirmed,
namely that most of the terms of order 8 and 9 are er-
roneous, altogether a somewhat disappointing compari-
son.

Delaunay’s work is a benchmark for what one human
individual is able to accomplish without the help of com-
puting machines. His results can be looked up in a good
library, since they were published in 1860 and 1867. The
more extensive work that came out of the computers in
the 1970s and 1980s, however, is not easily available be-
cause both the programming and the technical prowess
of the machines have changed so rapidly. Whoever
wants to find out what has already been done, beyond a
qualitative account, is almost forced to do the whole job
all over again with the help of whatever means are avail-
able at the time.

Delaunay provided important insights into the con-
vergence of series expansions in celestial mechanics.
This convergence is poor in the ratio m5n8/n , which is
known to very high accuracy. Although Delaunay tried
to go to ninth order in m , some of his results are still
insufficient, e.g., his expression for the motion of the
perigee is still in error by 1024. On the other hand, his
theory is analytic in all the variables and yet comparable
in accuracy to the best of his time, i.e., Hansen’s, who
had used numerical values for all the variables from the
very start.

E. The critique of Poincaré

At the end of the 19th century, classical mechanics
took a decisive turn away from the happy optimism of
its earlier practitioners. Physicists are finally waking up
at the end of the 20th century to an unpleasant reality
that the mathematicians, followed by engineers and as-
tronomers, have known for a long time: even simple dy-
namic systems, with only two degrees of freedom and
conserved energy, such as the double pendulum, have
very complicated motions as a rule. The elementary ex-
amples of the textbooks like Kepler’s motion for an iso-
lated planet are not typical at all of most of the realistic
systems in nature.

This capital discovery can be safely attributed to
Henri Poincaré (1854–1912), whose first series of scien-
tific papers is concerned with the qualitative behavior of
the solutions of ordinary differential equations. This
early work led him into celestial mechanics, in particu-
lar, into a study of periodic solutions of the full three-
body problem and its various special cases. This activity
received a strong stimulus when King Oscar II of Swe-
den announced a prize for the best scientific paper to
prove (or disprove) the stability of the solar system.
Poincaré was eventually declared the winner although
he was unable to give a definitive answer to the main
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question, and his long paper was published in 1890 in
Acta Mathematica (see Barrow-Green, 1996).

Then he followed up with what is considered his mas-
terpiece, a three-volume work entitled The New Meth-
ods of Celestial Mechanics, which appeared in 1892,
1893, and 1899. Its English translation has just been pub-
lished, a century later. This is not the place to give even
a brief account of this monumental work, except to say
that the Moon plays a special role as the first example
for which a periodic orbit was chosen as the starting
point for a new approach in mechanics, an idea that was
first proposed in 1877 by Hill to explain the Moon’s mo-
tion (see next section). Working through the more than
1200 pages of mathematical argument is not for the
faint-hearted and can be frustrating because Poincaré
insists on using a fairly abstract language, in spite of the
evident inspiration from physics, astronomy, and celes-
tial mechanics.

Three volumes of Lectures on Celestial Mechanics
were published in 1905, 1907, and 1910. They were nei-
ther intended as a rehash of the New Methods of Celes-
tial Mechanics nor as a competition to the classic Trea-
tise of Celestial Mechanics by Felix Tisserand, in four
volumes (1889, 1891, 1894, 1896), of which the third is
entirely devoted to the Moon. The standard methods are
subjected to a mathematical scrutiny in order to estab-
lish their legitimacy, in particular with respect to the
convergence of the approximation schemes. The first
volume treats the motion of the planets and is domi-
nated by the methods of Hamilton and Jacobi. The first
part of the second volume discusses the purely technical
problem of expanding the Hamiltonian for the perturba-
tion calculation, while the second part examines the
mathematical justification for the lunar theory of Hill
and Brown. The rather hefty third volume treats the
many kind of tides, in oceans and rivers, in the Earth’s
crust, and in the stars, both in theory and in observation.

F. The expansion of the lunar motion in the parameter m

In 1908 Poincaré published a 40-page paper in the
Bulletin Astronomique with the title ‘‘On the small divi-
sors in the theory of the Moon.’’ Its length is due to the
many different cases that have to be taken up in the
argument, but it is rather straightforward and its nota-
tion stays close to the special conditions of the Moon’s
motion. Rather than discussing the convergence of the
solution that comes out of perturbation theory, the main
issue is more drastic. The question to be answered will
be phrased carefully in order to get a clear reply.

The lunar problem in the form (63), with the time
replaced by the angle k as in Sec. IX.B, has four pairs of
action-angle variables plus the small parameters m
5n8/n , «, g, «8, and a5a8/a . The two pairs (K ,k) and
(L ,l ) are left as they are, but the pairs (G ,g) and
(H ,h) are replaced by two others in order to reflect the
fact that both the eccentricity « and the inclination g are
small. In agreement with Eq. (62) and the end of Sec.
VIII.C, we shall use
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r5A2~L2G !, s5A2~G2H ! (72)

to form the new pairs (r ,g1h) and (s ,h). Obviously, r
is of the order «AL , and s is of the order gAL . With the
further change in variables to (j1 ,h1) and (j2 ,h2),
where

~j1 ,h1!5r„cos~g1h !, sin~g1h !…,

~j2 ,h2!5s~cos h , sin h !, (73)

we have again two pairs of conjugate variables.
These Poincaré variables can be used directly in the

perturbation W to arrange the many terms in decreasing
order of importance according as the powers of m , r
5Aj1

21h1
2, s5Aj2

21h2
2, «8, and a. Each term has a

‘‘characteristic,’’

mm1rm2sm3«8m4am5, (74)

whose exponents m give an approximate idea of its rela-
tive size. Generating functions are used exactly as de-
scribed in Sec. IX.B.

Equations (60), however, show that the denominator
in Eq. (69) may bring about a division by various powers
of m , up to the third in the special case when the motion
of the node ḣ/n and the motion of the perigee ( ġ
1ḣ)/n enter with the same multiple. Poincaré calls de-
nominators of this type ‘‘analytically very small,’’ in con-
trast to denominators where they enter in the ratio 2 to
1, which he calls ‘‘numerically very small’’ because of
the empirical values of the lunar periods in Sec. V.C.
Therefore certain unavoidable canonical transforma-
tions will lower the exponent m1 in the characteristic.

Poincaré goes through a careful and rather lengthy
examination of all the many cases that might arise and
how they change the characteristic in the individual
terms of the solution. The interference of the small pa-
rameters besides m complicate the discussion, but ulti-
mately the presence of three degrees of freedom leads to
disaster: If Delaunay’s expansion is pushed far enough,
terms are found where the exponent of m is negative!

This conclusion defeats the whole purpose of the
theory, even though it happens only when the expansion
is driven quite far, much further than in Delaunay’s
work. Paradoxically, his incomplete solution might still
provide an excellent numerical accuracy. But this state
of affairs is worse than in an ordinary asymptotic expan-
sion, like that for the Bessel functions where the coeffi-
cients increase so fast, e.g., like factorials, that the posi-
tive powers of the expansion parameter are defeated. In
the lunar theory negative powers in the most crucial pa-
rameter cannot be avoided at all!

X. EXPANSION AROUND A PERIODIC ORBIT

A. George William Hill (1838–1914)

Hill’s career reflects life in the United States at the
end of the 19th century, with one glaring exception. He
never adjusted to the amenities and strains of regular
academic and scientific life, even after his work was
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widely appreciated and he received many honors. When
his Collected Works were published in 1905, Poincaré
wrote the 12-page introduction (in French), where he
says ‘‘This reserve, I was going to say this savagery, has
been a happy circumstance for science, because it has al-
lowed him to complete his ingenious and patient re-
searches.’’

Hill’s father moved to the countryside a few years af-
ter George’s birth in New York City, to start farming in
West Nyack, 30 miles up the Hudson river. Since his
mathematical ability had been noticed, he was sent to
Rutgers College in New Jersey, where he was lucky to
find a first-class teacher who made him study the classi-
cal works from the 18th and early 19th century. In 1861,
he joined the staff of the scientists working in
Cambridge, Massachussets, on the American Ephemeris
and Nautical Almanac.

After Simon Newcomb became Superintendent of the
Nautical Almanac in 1877, Hill started working on the
theory of Jupiter and Saturn. His results, with the title
New Theory of Jupiter and Saturn form volume III of
the Collected Papers, and occupy a hefty tome of more
than 500 pages. It was a cornerstone in Newcomb’s great
project of revising all the data for the orbits in the solar
system. (Physicists are aware of this enterprise only be-
cause it definitely established the missing 429 in the cen-
tennial precession of Mercury’s perihelion, which were
the best data for the confirmation of Einstein’s theory of
general relativity; see Pauli 1921 and 1958.) After a ten-
year stay in Washington, D.C., Hill retired in 1892 to his
beloved farm in West Nyack.

Hill’s great contribution to all of mechanics (including
its quantum version), and in particular to its celestial
branch, is contained in the 1877 paper On the Part of the
Motion of the Lunar Perigee which is a Function of the
Mean Motions of the Sun and the Moon. It was followed
1878 by a more detailed version Researches in Lunar
Theory. In the Collected Works, these papers appear as
numbers 29 and 32, among some 80 others that cover a
wide range of topics.

Lunar theory at that time came in several different
versions besides Delaunay’s. The theory of Lubbock and
de Pontécoulant appeared in the 1830’s, and was a
clever mixture of elements from earlier efforts that
could be systematically expanded in powers of the
Kepler parameters. Hansen (1838, with additions in
1862–1864), on the other hand, started from equations
close to Lagrange’s variation of the constants (45)–(50).
But he did not develop a systematic perturbation theory,
although he did carry his computations to very high pre-
cision. His final expression for the lunar coordinates be-
came the accepted standard for the remainder of the
19th century, until it was replaced in 1923 by Ernest W.
Brown’s extension of Hill’s work in all the national eph-
emerides.

B. Rotating rectangular coordinates

Hill’s inspiration must be connected with Euler’s Sec-
ond Theory, which was published (1772) in St. Peters-
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burg under Euler’s direction with the help of fellow aca-
demicians, J.-A. Euler (his son), Krafft, and Lexell. It
introduces two new ideas that turned out to be critical:
The Moon is described by Cartesian coordinates with
respect to the ecliptic, and this reference system turns
around the Earth with the Moon’s mean motion n in
longitude. This trick eliminates the linear term in time
from the longitude, just as there is none in latitude and
sine parallax. Euler also is the first to order the terms in
the expansion of the lunar motion according to their
characteristics like Eqs. (55) or (74).

But Hill makes a crucial modification by letting the
coordinates turn with respect to the ecliptic at the rate
of the mean motion of the Sun n8 rather than of the
Moon. The acceleration of the Moon in this rotating sys-
tem is now changed by 2n8(2dy/dt ,1dx/dt ,0), the
negative of the Coriolis force, and by n82(2x ,2y ,0),
the negative of the centrifugal force.

The series (31) is again the basis for the expansion of
the solar perturbation, but the Legendre polynomials
are handled differently. Instead of treating rj as a factor
in front of Pj , Hill puts it inside, so that rjPj becomes a
homogeneous polynomial of degree j in the lunar coor-
dinates. (In most solid-state applications of atomic
theory, the Legendre polynomials of low order are al-
ways written in this explicit manner.)

Hill’s purpose is to take into account the terms that
depend only on the ratio m5n8/n . Therefore he sets
R5a8, and all the corrections in powers of «8 are left
out in lowest approximation. Moreover, he stops with
the solar quadrupole, because the higher multipole
terms have additional powers in a5a8/a . With n82

5G0S/a83, the primary perturbation now reads simply

V52n82S 3
2

x22
1
2

~x21y21z2! D . (75)

The work of Newton, then of Clairaut and
d’Alembert, and eventually of many others, including
particularly Delaunay, had shown that the expansion in
powers of m was the main culprit for making lunar
theory so difficult and unsatisfactory. Poincaré’s results
(at the end of the last section) were still in the future.
Hill was the first to treat the difficulties with the motion
of the perigee completely, and separately from all the
other complications in the motion of the Moon.

C. Hill’s variational orbit

With the quadrupole potential (75) added to the stan-
dard gravitational attraction between Earth and Moon,
there is now a well-defined mechanical problem of mo-
tion in three dimensions that has to be solved com-
pletely, at least for sufficiently small values of m . Before
one writes down its equations explicitly, the length scale
is normalized to the semi-major axis a according to
Kepler’s third law (15). The time variable t is normal-
ized to the length of the synodic month,

t5~n2n8!~ t2t0!. (76)

With the complex notation
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u5x1iy , v5x2iy , r25x21y21z25uv1z2,

z5exp~ it!, D5
d

idt
5z

d

dz
, (77)

the equations of motion now are

D2u12m8Du2
u

r3 1
3m82

2
~u1v !50, (78)

D2v22m8Dv2
v
r3 1

3m82

2
~u1v !50, (79)

D2z2
z

r32m82z50, (80)

where we have introduced the new parameter m8
5n8/(n2n8)51/(number of synodic months in one
year).

Since our dynamic system does not have any time de-
pendence, there is an integral of motion C which Hill
calls the Jacobian integral,

1
2

~2DuDv1Dz2!2
1
r

2
3
8

m82~u1v !25C . (81)

Normally, one would first of all define the energy of a
trajectory by fixing the value of C , but Hill decides to
find a solution that is defined by its period right from the
start, not by its energy.

His ingenious idea is that the real trajectory of the
Moon must be close to a periodic orbit with the correct
period. Among all the known correction terms in the
accepted description of the Moon’s motion, only Tycho
Brahe’s variation is retained because it has the period of
the synodic month. The resulting ‘‘variational orbit’’ lies
in the ecliptic and has a slightly oval shape which is cen-
tered on the Earth, with the long axis in the direction of
the half moons, as Newton had foreseen.

The required periodicity with the synodic month is
enforced by postulating a solution in the form

u0~t!5
1
a

~x01iy0!5eitS a01(
j51

`

~ajz
j1a2jz

2j!D ,

(82)

a power series with positive and negative integer expo-
nents. If the orbit is symmetric with respect to the x axis,
then u0(2t)5u0* , and all the coefficients in the series
are real. The symmetry with respect to the y axis is
equivalent to the point symmetry at the origin, so that
u0(t1p)52u0(t), and all the odd-numbered coeffi-
cients vanish.

Hill’s 1878 paper contains a detailed and complete ac-
count of his work in finding the variational orbit in the
ecliptic, z50. The problem is nonlinear because of the
terms with 1/r3 in Eqs. (78) and (79). The coefficients in
Eq. (82) are expanded in powers of m8 to exponents
that guarantee 15-figure accuracy! Poincaré (1907) made
Hill’s procedure more transparent in his Lectures on Ce-
lestial Mechanics. With the help of the Jacobian integral,
Hill was able to manage his computations in rational
arithmetic, and in such a way that he gained a factor m84

at each step.
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At the end of this long paper, Hill obtains the varia-
tional orbit for increasing values of m8. The number of
synodic months per year51/m8 comes down from 12.37
through the integers until it reaches the critical value
1.78265 where the oval shape acquires a cusp in the half
moons (see Fig. 5). Hill thought the satellite would not
reach the half moon position any longer for supercritical
values of m8. But Poincaré showed that the sequence of
variational orbits continues with the satellites now mak-
ing a short regressive motion around the half moon in
the rotating frame, before taking up again the principal
motion in the forward direction.

A recursive computation for the variational orbit was
set up by Schmidt (1995) with relative ease, provided the
program can handle rational arithmetic. The expansion
of u0 is made in powers of m8 where each term is a finite
polynomial in z and z21 whose order does not exceed
the power of m8. Each next-higher order follows from
the lower-order terms in a standard recursion applied to
Eq. (78).

D. The motion of the lunar perigee

The real trajectory of the Moon is now constructed as
a small displacement from the variational orbit. To
make the distinction, coordinates of the variational orbit

FIG. 5. Hill’s diagram of the variational orbit for different
lengths of the synodic month: a512.369 lunations per year,
like our Moon, b54, c53, d51.78265 lunations leading to a
cusp. Poincaré showed that this series continues smoothly,
leading to an ever increasing loop around the half moon.
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will carry the suffix 0, while the displacement in first
order carries the suffix 1. The perigee and the node will
be treated simultaneously because they lead to almost
the same equations. Our presentation will differ some-
what from the classical work of Hill.

The linearized version of Eqs. (78)–(80) is written as

~D1m8!2u11M~z!u11N~z!v150,

~D2m8!2v11M~z!v11N* ~z!u150, (83)

D2z122M~z!z150. (84)

The variational orbit (82) enters these equations
through

M~z!5
m82

2
1

1

2r0
3 , N~z!5

3m82

2
1

3u0
2

2r0
5 , (85)

where the complex conjugate N* has v0 replacing u0 .
Hill’s work is concerned with the two equations (83);

we shall not discuss their solution in detail, but explain
briefly in the next section how to solve the simpler equa-
tion (84) in a more direct manner. The differential equa-
tions (83) and (84) are linear with coefficients that are
periodic functions of the independent variable t; their
general discussion goes back to Floquet (1883). The
trivial solution (Du0 ,Dv0,0) is eliminated by consider-
ing only the displacement w in the ecliptic that is locally
at a right angle to the variational orbit. It satisfies ‘‘Hill’s
equation,’’

D2w5Qw , with Q5(
2`

1`

u jz
2j and u2j5u j . (86)

The periodic function Q is a rather complicated expres-
sion in terms of the variational orbit (82). This oscillator
is driven parametrically with the frequency 1, but it re-
sponds with the different frequency c0 that gives the mo-
tion of the perigee.

By a daring maneuver, Hill transforms his equation to
an infinite set of homogeneous linear equations with a
determinant D(c0) that can be reduced to the simple
form

D~c0!5D~0 !2
12cos c0p

12cos Au0

. (87)

The solution of D(c0)50 is thereby reduced to an ex-
pansion of D(0) in powers of m84. The motion of the
perigee c0 is obtained to very high accuracy. Poincaré
remarks in his preface to Hill’s Collected Papers: ‘‘In this
work, one is allowed to perceive the germ of most of the
progress that Science has made ever since.’’

E. The motion of the lunar node

The first application of Hill’s method obviously con-
cerns the motion of the lunar node. The luckless Adams,
who was a close second to Leverrier in the discovery of
the planet Neptune, published a short notice in 1877 af-
ter reading Hill’s great paper. He had obtained the mo-
tion of the node some years before in exactly the same
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fashion, starting from Eq. (84). The discussion of ‘‘Hill’s
equation’’ in this case is simpler, and the origin of ‘‘Hill’s
determinant’’ is easier to understand; but Adams does
not get the formula (87) for D.

It is worth emphasizing the discoveries that are hid-
den in this method. First, a periodic orbit is found in
some appropriate reference frame that has to be chosen
on the basis of physical intuition. Then the dynamic
neighborhood of this orbit is examined by linearizing the
equations of motion. The result of this approach is al-
ways an equation that reads exactly like Hill’s equation
(86).

The Moon’s motion at right angle to the ecliptic is
described by a first-order displacement z1 from the
variational orbit,

iz1~t!5eig0tG~t!2e2ig0tG* ~t!, (88)

where G is also complex valued, satisfying the periodic-
ity conditions G(t1p)5G(t). We assume the expan-
sion

G~t!5(
2`

1`

k jz
2j, (89)

where the coefficients are real. The function Q in Hill’s
equation is now the function M(z) in Eq. (85) from
which one gets the coefficients u j .

The coefficients in Eq. (89) can be viewed as a vector
k, and Hill’s equation is easily reduced to a system of
linear equations,

u~g0!k50. (90)

The infinite matrix u(g0) has the same structure as the
matrix in the preceding section that led to the determi-
nant D(c0). The motion of the lunar node is obtained by
requiring that the determinant of u(g0) vanish. In terms
of the angles g and h , we get the more familiar expres-
sions for the mean motion of the perigee and of the
node,

ġ1ḣ5S 12
c0

11m8Dn , ḣ5S 12
g0

11m8Dn . (91)

F. Invariant tori around the periodic orbit

Condition (90) for the coefficients in the displacement
z1 leaves an arbitrary constant to be determined for the
motion (88) at right angle to the ecliptic. This parameter
plays the same role as an initial condition and is clearly
related to the ordinary inclination g. The term j50 in
Eq. (89) by itself describes the essential feature of the
motion at right angle to the ecliptic, so that k0 can be
taken as a measure of the effective inclination g ; it
serves as the initial condition in Eq. (84).

In the same manner, the condition D(c0)50 with Eq.
(87) leaves us with the choice of one real number that
determines the scale of the displacement u1 in the eclip-
tic. The number is equivalent to the effective eccentric-
ity « of the lunar orbit, and acts like an initial condition
for the equations of motion (83).
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The multiplicity of solutions for the lunar problem can
be given a geometric interpretation. The ‘‘flow’’ of the
lunar trajectories is embedded in a phase space of six
dimensions, three for the Cartesian coordinates and
three for the components of the momentum. This six-
dimensional space is naturally reduced to the five-
dimensional surface of constant energy by the Jacobian
integral (81).

The most general trajectory for the Moon is given in
lowest approximation by the variational orbit (82) in the
ecliptic, with the displacements (86) and (88). While the
variational orbit is covered in one synodic month corre-
sponding to the time variable t, the anomaly l 5c0t
runs with the anomalistic month, and the argument of
latitude F5g0t runs with the draconitic month. The re-
sult is a three-dimensional torus surrounding the varia-
tional orbit, all embedded in a five-dimensional space.

The speeds c0 and g0 at which any trajectory winds
itself around the variational orbit are independent of the
eccentricity « and inclination g. They do not vanish as
the torus winds itself ever more closely around the varia-
tional orbit. The higher-order corrections change noth-
ing in this first-order picture. Hill’s theory gives a com-
plete description of the flow in phase space near the real
lunar trajectory. It is less than what the ambitious earlier
theories were trying to find, since it covers only a rela-
tively small part of the phase space for the original prob-
lem (29).

G. Brown’s complete lunar ephemeris

Ernest William Brown (1866–1938) came from his na-
tive England in 1891 to teach mathematics at Haverford
College, where he wrote his much appreciated Introduc-
tory Treatise on the Lunar Theory (Brown, 1896), and
the long series of papers (Brown, 1896–1910) to expand
Hill’s work into a complete description of the Moon’s
motion. In 1907 he went to Yale University, mainly be-
cause of promised support for the computing and pub-
lishing of his lunar tables, and he eventually became the
first J. W. Gibbs Professor of Mathematics. The tables
finally appeared in 1919 and became the base for the
calculations of all the national ephemerides after 1923;
see the biography by Hoffleit (1992).

The complex notation (77) is now completed by the
definitions,

z5eit, z15eic0t1l 0, z25eig0t1F0,

z35eim8t1l 08, (92)

where the new complex variables are associated with the
effective eccentricity «, the effective inclination g, and
the eccentricity «8 of the Earth-Moon’s orbit around the
Sun. The complete expansion of the lunar coordinates
now becomes

S z21u
iz D5 (

pqrs
Apqrsz1

pz2
qz3

r zs, (93)

where even powers of z2 go with z21u , while the odd
powers of z2 go with iz .
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The coefficients Apqrs are real polynomial series in
the variables «, g, «8, a5a/a8,

Apqrs5 (
abcd

Cpqrs
abcd«agb«8cad. (94)

The coefficients C depend on the frequency ratio m8 as
well as on the mass ratios M/E and (E1M)/S and sat-
isfy the inequalities

a>upu, b>uqu, c>uru. (95)

The expression m5«agb«8cad is called by Brown the
characteristic of a particular term in Eq. (93). The lowest
characteristic that is compatible with a given set of ex-
ponents (p ,q ,r) is its principal characteristic.

The successive terms in Eq. (93) can be regarded as
higher-order displacements from the variational orbit.
Each one can be determined by insertion into Eqs. (78)–
(80), which have to be augmented with the additional
terms of the solar perturbations that were left out of Eq.
(75). The characteristics in Eq. (93) provide a natural
ordering in which the variational orbit represents the
order 0, while the displacements u1 and z1 are the first
order; they determine the higher orders.

For each higher order an equation such as (83) and
(84) is found, in which the new term in Eq. (93) appears
on the left-hand side, whereas the relevant terms of
lower order appear on the right-hand side. Therefore
the mechanical analog is now an externally driven para-
metric oscillator; its frequency is determined by the
combination of zeta’s. Instead of Eq. (90) one gets an
inhomogeneous linear equation such as

u~pc01qg01rm8!h5Q , (96)

where g0 has been replaced by a linear combination with
integer coefficients, pc01qg01rm8. The vector Q on
the right-hand side arises from the right-hand side in the
modified equations (83) and (84).

Solving the equations for the lunar problem can now
be organized quite systematically according to the char-
acteristics, and it is always clear before beginning the
process of computing the right-hand sides in Eq. (96)
which characteristics of lower order are able to contrib-
ute to the given characteristic m, and how. The actual
solution at each step requires no more than solving an
inhomogeneous linear equation with always the same
matrix. Even for high-accuracy work, the number of vec-
tor components at any one step is no more than 20 be-
cause the functions (85) converge like power series in
m8z .

The matrix u in Eq. (96) is regular unless, because of
Eq. (90), q51 and p5r50 in the argument of u. Such a
thing can happen when two terms of comparatively high
characteristic meet on the right-hand side of the equa-
tions of motion (84). The system will respond with a
shift in frequency dg0 , and the required corrections of
the frequency can be worked out.

H. The lunar ephemeris of Brown and Eckert

When Brown started to work on the new lunar theory
based on Hill’s ideas, he stated his aim very clearly. The
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accuracy was to be such ‘‘that the coefficients of all peri-
odic terms in longitude, latitude, and parallax shall be
included which are greater than 09.01, and that they shall
be correct to this amount. The number of terms required
is undoubtedly very great. The calculation of coefficients
up to sixth order inclusive with respect to the lunar eccen-
tricity and inclination will be necessary; those of the sev-
enth order may be replaced by their elliptic values.’’

Hansen’s theory, which was in universal use then, was
entirely numerical, while Delaunay’s, which was being
completed to include the effects of the planets, was en-
tirely algebraic. Brown (1896–1910) made an important
compromise: the ratio m85n8/(n2n8) of the mean mo-
tions would be replaced by its numerical value from the
very start; its value was extremely well known and very
unlikely to change due to new observations; any expan-
sion in powers of m8 seemed to require the most
troublesome mathematics, and the results were gener-
ally no guarantee of improvement in the general accu-
racy. On the other hand, leaving «, g, «8, and a as alge-
braic quantities was part of the whole development;
their values were more subject to revision, and keeping
them algebraic would facilitate the comparison between
different theories.

The resulting Tables of the Motion of the Moon (1919)
are the last of their kind; the first tables of similar but
much simpler design are found in Ptolemy’s Almagest.
Their use requires only looking up with interpolation,
and addition of numbers in order to get the coordinates
of the Moon in the sky for any instant of time. A lot of
ingenuity goes into making the task of the computer, a
human being at that time, straightforward and reliable.

In 1932 Comrie proposed the use of mechanized
bookkeeping machines for the purposes of celestial me-
chanics. This project was realized by Wallace J. Eckert,
professor of astronomy at Columbia University, who es-
tablished in 1933 the T.J. Watson Astronomical Com-
puting Bureau with the help of IBM’s chairman. During
the second World War, Eckert was the director of the
U.S. Nautical Almanac Office at the Naval Observatory
in Washington, D.C., where he took special pride in de-
signing the first Air Almanac that was produced without
human intervention and presumably free of printing er-
rors. After the war, he became the first Ph.D. to be hired
by IBM and was asked to run its first research labora-
tory, to be located at the campus of Columbia Univer-
sity.

Meanwhile it had become clear that, while the
claimed accuracy had indeed been achieved in Brown’s
original papers, the tables did not quite live up to expec-
tations. In the process of making the results usable for
the practical calculation of ephemerides, a number of
short-cuts had been adopted that reduced their preci-
sion. In 1954, Eckert and his collaborators published a
careful list of all coefficients in the expansion (93) that
Brown had obtained and converted them directly to
similar expansions for the lunar longitude, latitude, and
parallax. In using this list, however, the computer was
expected to multiply each coefficient with its appropri-
ate trigonometric function, and then add up all the prod-
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ucts. There are 985 terms from the solar perturbation
and 642 additional terms for the planetary perturba-
tions, where all of the latter are smaller than 1 arcsec-
ond. This ‘‘Improved Lunar Ephemeris’’ became the ba-
sis for the Apollo program.

Eventually Eckert decided to redo all of Brown’s
work with the algebra done on one of IBM’s all-purpose
electronic computers. After his retirement in 1967, he
continued his project with the help of just one program-
mer. All terms in Eqs. (93) and (94) including the sixth
order were going to be calculated with an accuracy of
10212. After Eckert’s death in 1971, I accepted the job of
seeing the work to its conclusion. A detailed comparison
with related work (Gutzwiller, 1979) showed that the
expected accuracy had been achieved, but the rigid goal
of all sixth-order terms was unrealistic because of the
incredible proliferation of minute terms without practi-
cal significance.

Dieter Schmidt (1979, 1980a) of the University of Cin-
cinnati proceeded independently to redo Brown’s calcu-
lations with the help of his own program for the alge-
braic manipulation of large trigonometric series. With
the large increase in the accuracy of the lunar data, it
seemed natural to include all the terms larger than
10212, independent of their order. Since Schmidt’s re-
sults could be directly compared with the results of Eck-
ert’s project, the two works were reported together
(Gutzwiller and Schmidt, 1986). The conclusions from
this state-of-the-art computation will be discussed in the
next section.

XI. LUNAR THEORY IN THE 20TH CENTURY

A. The recalcitrant discrepancies

The last chapter in the third volume of Tisserand’s
Treatise on Celestial Mechanics (1984) deals with the
‘‘Present State of Lunar Theory’’; it does not cover
Brown’s Complete Ephemeris and the finishing touches
by Eckert, nor the critical evaluation of Poincaré. Nev-
ertheless, Tisserand’s conclusions are more farsighted
than he might have expected: he acknowledges some
fundamental difficulties and hopes for a major discovery
without knowing where it could come from.

The general agreement between Hansen’s tables of
1857 with the work of Delaunay made it obvious that
the three-body problem of Moon-Earth-Sun had finally
been solved to the required precision. The most recent
improvements of lunar theory by Hill and Adams fully
supported the work of Hansen and Delaunay on the
main problem, i.e., on the motions of the pure three-
body system. The work of Newcomb on this important
question can be followed in Archibald’s bibliography
(1924). Moreover, Hansen reported complete agreement
with the observations from 1750–1850 to within errors
of 19 to 29 at most. While this claim seemed correct, it
came as a big surprise that the agreement deteriorated
almost immediately to the point where some of the er-
rors increased from 59 by 1870, to 109 by 1880, and 189
by 1889.
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The sources of these discrepancies are not easy to pin
down. A major source of uncertainty arises from the
acceleration of the Moon’s motion, which was discov-
ered by Halley and then explained by Laplace. But a
careful recalculation by Adams produced a value only
half of what was required by the observations. A judi-
cious change in the parameters and in the initial condi-
tions is not sufficient; the perturbations by the planets
are not nearly large enough to bring the errors down.
Finally an empirical inequality with a period of 273 years
was recommended, without any attempt to explain its
size or even its period.

In 1923 the Tables of Brown became the generally
accepted basis for the computation of lunar positions,
but their accuracy suffered a serious blow during the
solar eclipse of January 24, 1925, mentioned in Sec.
III.E. The path of totality crossed the upper half of
Manhattan, with the southern boundary of the shadow
at 96th Street. Consolidated Edison, New York City’s
electric utility company, posted 149 pairs of observers on
the roofs along Riverside Drive on every block, in order
to determine the exact line of the Moon’s shadow (see
TIES, 1925). Only one observer expressed doubt about
the Sun’s being covered by the Moon on his location.
The line could be pinned down within 100 meters.

The New York Times carried a headline on the next
day: Where was the Moon? It turns out that the Moon
was four seconds late, not much by the standards of a
casual observer, but much more than the accuracy that
Brown had tried to achieve. An error of 4 time-seconds
translates into an error of more than 2 arcseconds in
longitude, roughly speaking. The precision of the shad-
owline, however, translates to an accuracy of better than
0.1 arcsecond in latitude. Actually the profile of the
Moon varies by a few kilometers (Bailey’s beads) with
its exact orientation, and that may have been part of the
problem with the longitude.

With the arrival of computing machinery in the 1930s
the processing of data and the preparation of ephemeri-
des could be accomplished without the incredible drudg-
ery of earlier times. Celestial mechanics received an
enormous impulse in the late 1950s from the sudden
push for a large program of space exploration. Lunar
theory in particular profited from President Kennedy’s
decision to have humans visit the Moon by the end of
the 1960s. Indeed, there followed a prolific outpouring
of interesting work, which will be reviewed somewhat
summarily in this Section.

At the end of the 1990s it has to be admitted, how-
ever, that Tisserand’s diagnosis is still valid. The main
problem of lunar theory has been completely solved for
all practical purposes, but there have been no major dis-
coveries in getting a more direct analytical approach,
and we are still wrestling with uncertainties in the com-
parison with the observations of almost 1 arcsecond.
There is a long list of difficulties outside the strict con-
fines of the three-body problem that have to be taken
into account in order to improve the agreement with the
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observations. The various sections of this Section are
intended to give the reader a brief glimpse of some of
the efforts in this area.

Meanwhile the three-body problem in its full general-
ity is still with us and occupies many volumes of papers
in learned journals. Modern computers are the main re-
source for exploring all the possibilities of the general
theory; there are many applications in the solar system
and even some outside. But the Moon-Earth-Sun system
is no longer among the active projects if one looks at the
scientific literature.

B. The Moon’s secular acceleration

In 1693 Halley compared the dates of some well-
documented lunar eclipses: the longitude of the Moon
could not be written as a linear function of time plus any
number of sinusoidal corrections. A quadratic term in
time was necessary to achieve a decent fit. Empirically,
the lunar motion was found to suffer a small accelera-
tion.

The longitude of the Moon can be represented sche-
matically by the formula

l5l01nt1s~ t/cJul!
21( A sin~at1b!, (97)

where cJul designates one Julian century of 36525 mean
solar days. The sum is extended over all the known pe-
riodic perturbations, from the Sun, the other planets, the
shape of the Earth, and so on. The value of s was de-
termined during the 18th century by various astrono-
mers to be about 10 arcseconds.

The glory of discovering the main cause belongs to
Laplace (1787), who attributed it to the change in the
eccentricity «8 of the Earth’s orbit. The formal calcula-
tion is based on the second-to-last term of the first line
in Eq. (53), i.e., the term proportional to «82 in the per-
turbation W . The Astronomical Almanac for 1995 gives
only the very rough formula «850.01671 043
20.00000 00012d , where d , is the interval in days from
1995 January 0, 0 hours. The coefficient of the quadratic
term in Eq. (97) is found to be 10.66 arcseconds.

Adams (1853, 1860) pursued this calculation to in-
clude higher corrections in the powers of m and found
that all the higher powers in m decreased the value of
the coefficient s to 6.119, too small by a factor of 2. It
also became clear that the rotation of the Earth is bound
to slow down because angular momentum gets trans-
ferred to the Moon due to the braking action of the
tides. Part of the lunar acceleration is an ‘‘optical illu-
sion’’ because it is really due to the slowing down of the
Earth’s rotation.

When the Moon acquires additional angular momen-
tum, its potential energy with respect to the Earth in-
creases, whereas its kinetic energy decreases. The Moon
goes into a higher orbit where its speed with respect to
the fixed stars decreases while its apparent speed with
respect to the Earth increases. The slowing down of the
Earth’s rotation is well documented in prehistoric (geo-
logic) times. The trouble in historic times is the irregular
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nature of this process, which finally forced the transition
from the mean solar day to the mean solar year as the
standard scale of time.

The ancient observations of eclipses, both lunar and
solar, have been discussed with ever increasing sophisti-
cation for the purpose of determining the secular accel-
eration of the Moon as well as the rotation of the Earth;
some of the more recent work is due to Spencer-Jones
(1939), R. R. Newton (1970, 1979), Morrison (1978), and
Stephenson (1978). Modern measurements are reported
and critically assessed in monographs like that of Munk
and MacDonald (1960), collections of special articles
like those of Kopal (1961) and Brosche and Sünder-
mann (1978), and Conference Proceedings like those ed-
ited by Marsden and Cameron (1966), Calame (1982),
and Babcock and Wilkins (1988). The data are quite
confusing to the layperson (see Van Flandern, 1970).

C. Planetary inequalities in the Moon’s motion

The presence of the other planets in the solar system
acts as an external disturbance. Their effect on the mo-
tion of the Moon is weak, so that they are generally
investigated only after the main problem has been
solved. Three ways to go about this task will be dis-
cussed briefly in this section: the variation of the con-
stants of Lagrange and Poisson of Sec. VIII, the canoni-
cal formalism of Hamilton and Jacobi of Sec. IX, and
the method of Hill and Brown that was explained in Sec.
X.

It is unlikely that the Moon exerts any kind of pertur-
bation on the planets of the solar system with the excep-
tion of the Earth; nor is the direct perturbation of the
planets very effective. But Newton’s proposition LXVI
(see Sec. VI.E) reminds us that not only the planets, but
the Sun itself has to respond to gravitational forces.
Therefore we have to take into account the reaction of
the Sun to the motion of the planet in its Kepler ellipse.
As a particularly instructive example, Jupiter with
1/1000 solar mass is about 1000 solar radii away, so that
the center of mass Sun-Jupiter lies just outside the Sun.
This leads to a noticeable indirect effect on the Moon.

The first method is similar to the discussion in Sec.
VIII.F concerning the effect of the Earth’s shape on the
Moon’s orbit. The main job is to write down the energy
of the gravitational interaction between the Moon and,
say, Jupiter using the expansions of the Moon’s longi-
tude, latitude, and parallax in terms of the angles
l ,g ,h ,l 8 from Delaunay’s work. The mass and the orbit
of the planet are assumed to be known; its Kepler pa-
rameters are kept constant in first approximation. The
planetary terms in addition to the solar perturbation V
are inserted into Lagrange’s equations (45)–(50).

By the end of the 19th century it became clear that the
method of canonical transformations is by far the most
efficient. Therefore the work of Delaunay on the solu-
tion of the three-body problem is the prerequisite. The
planetary terms in the Hamiltonian become the object
of some further canonical transformations, in von
Zeipel’s or any other form. Hill (1885) claims that
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‘‘about ten days’ work suffice for the elaboration’’ of
Jupiter’s action on the Moon. But the 16 large pages of
arithmetic in Hill’s Collected Mathematical Works do not
look very encouraging!

D. Symplectic geometry in phase space

Whereas the Lagrange-Poisson method provides a
modicum of physical insight at the price of some con-
ceivable confusion, the canonical transformations on top
of Delaunay’s work are straightforward. The real chal-
lenge comes with extending the Hill-Brown results for
the main problem of lunar theory to cover the perturba-
tions due to the Earth’s shape and due to the other plan-
ets.

The difficulty arises from Brown’s decision to insert
the numerical value of m5n8/n from the very begin-
ning, rather than to expand in powers of m as Delaunay
and Hill did. The Moon’s semi-major axis a determines
her mean motion n in longitude according to Kepler’s
third law, and that parameter enters the solution of the
main problem through m . The equations of motion, ei-
ther in the Lagrange-Poisson form [Eqs. (45)–(50)] or in
the canonical form [Eq. (63)], require the derivatives of
the perturbation with respect to a . How can we find the
derivative with respect to a parameter when only its nu-
merical value is present in the solution?

Since the action L is directly related to the semi-
major axis a by Eq. (62), the derivative with respect to L
can be used. Brown (1903, 1908) invokes the symplectic
nature of the trajectories in phase space to obtain the
required derivatives of his solution with respect to the
actions L ,G ,H . Unfortunately, this most imaginative
application of the symplectic geometry of classical me-
chanics in phase space is not generally known. Meyer
and Schmidt (1982) have given a much clearer and
shorter version of Brown’s original explanations.

Brown’s method can be understood from looking at
the special case in which we know the derivatives of the
trajectory with respect to G ,H ,l ,g ,h , but have used a
numerical value for L . We write down explicitly the
Poisson bracket,

@x , ẋ#5
]x

]L

] ẋ

]l
2

] ẋ

]L

]x

]l
1

]~x , ẋ !

]~G ,g !
1

]~x , ẋ !

]~H ,h !
51.
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After dividing this equation with the known function
(]x/]l )2, the first two terms become simply the time
derivative of ]x/]L divided by ]x/]l . The value of
]x/]L is then obtained by integrating over time; the
constant of integration is determined by the required
symmetries and the other Poisson brackets.

Brown used the same idea to check the internal con-
sistency of his solution. The Poisson brackets are more
demanding than it appears at first, because their right-
hand sides are constants. If the time derivatives are mul-
tiplied out, all the periodic terms have to cancel out.
This check was also carried out on the computer by
Schmidt (1980).
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E. Lie transforms

As electronic computing became more efficient in the
1960s, and financial support for lunar theory became
available, it was natural to emulate Delaunay’s great
feat with different means. A first try by Barton (1966) on
the basis of a straightforward repetition, however, only
got as far as calculating the perturbation function with
the addition of ninth- and tenth-order terms. The ca-
nonical transformations themselves, even in von Zeipel’s
form, did not lend themselves easily to a systematic pro-
cedure that could be programmed. The expressions in
the second line of Eq. (66) have to be inverted. In many
practical cases this inversion depends on the possibility
of expanding F as well as the Hamiltonian of the system
in a power series with respect to a small parameter m.

The method of Lie transforms avoids the inversion by
aiming directly at the transformation that represents the
old angles y and old actions Y in terms of the new angles
x and new actions X . The transformation formulas are
power series in m where the zero order is the identity.
The Lie derivative LFf of a function f(y ,Y) with respect
to a generating function F(y ,Y) is the Poisson bracket
@F ,f# , and plays an essential role. The formalism is
worked out in a fundamental paper by Deprit (1969).

The given Hamiltonian V(y ,Y ;m ,t) is transformed
into a particularly simple form such as J(x ,X ;m ,t). The
new Hamiltonian J may be required to have no more
terms in the angles x , at least up to a certain power of m.
At each step in the recursion, the function F(y ,Y) has
to satisfy a first-order partial differential equation. This
new scheme becomes a straightforward algorithm that
can be programmed very efficiently. Once the generat-
ing function F is known, the same algorithm can be used
to express the old action angles (y ,Y) in terms of the
new ones (x ,X).

Many different detailed procedures were worked out
in the late 1960s and early 1970s to realize and apply the
Lie transforms in celestial mechanics, as well as to prove
their equivalence. Hori (1963) seems to have been the
first to try a new approach to lunar theory; see Stumpff
(1974) for a more recent account. In particular, the re-
lations between the formalisms of Hori (1966, 1967) and
of Deprit (1969) are treated by Kamel (1969), Henrard
(1970), Campbell and Jefferys (1970), Mersman (1970,
1971), Henrard and Roels (1973), Rapaport (1974), and
Stumpff (1974). One application by Deprit and Rom
(1970) that is closely related to the lunar problem con-
cerns the main problem of satellite theory: a satellite
circling the Earth is subject to the perturbation of the
Earth’s quadrupole moment. The most striking result of
this method, however, is the complete recalculation of
Delaunay’s theory by Deprit, Henrard, and Rom
(1971a), to be discussed in the next section.

F. New analytical solutions for the main problem of lunar
theory

The exploration of the Moon by the U.S. National
Aeronautics and Space Administration (NASA) during
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the 1960s and early 1970s provided the incentive for
many celestial mechanicians to improve the available
calculations of the Moon’s motion. It is important to
distinguish two types of solutions for the Moon’s trajec-
tory. So far we have discussed almost exclusively the
main problem as defined at the end of Sec. VII.C, and its
solution was always represented as a Fourier series in
the four angles l ,g ,h ,l 8. They will be called ‘‘analyti-
cal’’ solutions to distinguish them from the ‘‘practical’’
solutions that are represented by a direct numerical in-
tegration of the equations of motion. The latter include
right away the effect of all the other perturbations on
the Moon besides the influence of the Sun.

A first effort went into completing some work that
Airy (1889) had left unfinished and that had been criti-
cized by Radau (1889). The idea is simple: the best avail-
able solution is substituted into the relevant equations of
motion, and the necessary corrections are determined by
varying the coefficients in the expansion of the solution.
Eckert and Smith (1966) started from Brown’s solution
and achieved residuals in the 13th to 15th decimals by
solving 10 000 equations of variation. Although the best
computers of the time were run for several hundred
hours, the report of the results still creates the impres-
sion of a tremendous effort in manual labor.

The next great enterprise was already mentioned at
the end of Sec. IX because it tries to obtain a solution
that is an improvement on Delaunay’s classic work. It
was called Analytical Lunar Ephemeris (ALE) by its
creators at the Boeing Scientific Research Laboratories,
Deprit, Henrard, and Rom (1970, 1971c). Regrettably,
only certain parts of it have been reported in the scien-
tific journals, presumably because the total output of
data is too large. The method of Lie transforms was used
to get a completely algebraic solution in all the param-
eters with all the coefficients as rational numbers. The
work of Delaunay can now be used with confidence
since the corrections are easily accessible.

Among the fascinating results is a short note by De-
prit and Rom (1971) dealing with the long-period term
in the Moon’s longitude. It arises from the combination
3l2l 22F , whose period can be found from the figures
in Sec. V.C to be 183 years. It leads to a denominator
that Poincaré called ‘‘numériquement très petit’’ in con-
trast to the term ‘‘analytiquement très petit’’ that led to
the disaster at the end of Sec. IX. The longitude was
found to contain the term

315
128

ma«g2«8 sin~3l82l22F13D !, (99)

which Laplace thought ‘‘quasi impossible’’ to predict
from the theory. Its amplitude turns out to be com-
pletely negligible.

A project that is related to ALE was conceived by
Henrard (1978, 1979) under the name of Semi-
Analytical Lunar Ephemeris (SALE). It starts with a
completely analytical solution of Hill’s problem, i.e., the
lunar trajectory in three dimensions if the Sun’s pertur-
bation is reduced to its average quadrupole field [Eq.
(75)] in the neighborhood of the Earth. The solar eccen-
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tricity «8 and the ratio of the semi-major axes a5a/a8
are neglected in this first step. Their effect is then
treated as a perturbation to the fully algebraic solution
of Hill’s problem. The numerical agreement with ALE is
excellent.

A completely independent approach was first con-
ceived by Chapront-Touzé (1974, 1980) at the Bureau
des Longitudes in Paris. The solutions are assumed to be
the trigonometric series in the relevant angles, each with
its own rate of change that has to be determined. The
basic program has to manipulate these large series and
then match their coefficients. In contrast to the projects
mentioned so far, this effort has been pursued system-
atically to yield a complete ephemeris for the solar sys-
tem under the abbreviation ELP 2000 because the vari-
ous constants were adjusted to that epoch (see the
further discussion in Sec. XI.J). The planetary perturba-
tions, the effect of the Earth’s and the Moon’s shape,
and even relativistic corrections are all taken into ac-
count, but the long-period term [Eq. (99)] is making
trouble!

Finally, there is the work of Eckert that was men-
tioned at the end of Sec. X; it was based on Brown’s
development of Hill’s approach to the lunar problem.
Since the Lunar Laser Ranging (LLR) allowed the lunar
distance to be measured with a precision approaching a
few centimeters out of 400 000 kilometers, or 10210, it
seemed reasonable to Gutzwiller and Schmidt (1986)
that all terms in the expansion be calculated down to
that level and be correct to 12 significant decimals. Such
a requirement could be met if the calculations were
made with so-called ‘‘double precision,’’ which guaran-
tees at least 14 decimals. The result would be called
ELE for Eckert’s Lunar Ephemeris.

As the work proceeded beyond Eckert’s original
plans, however, the term (99) made its appearance with
a magnification by a factor of 2000 because of its small
denominator. It was necessary to use ‘‘extended preci-
sion’’ and lower the cutoff to a level of 10217, which
would correspond to a distance of a few nanometers on
the Moon. That is physically quite absurd and betrays a
mild form of chaos even in the Moon’s motion. The au-
thor (Gutzwiller, 1979) showed, in the case of Eckert’s
original work, that the terms below a certain threshold
create a noise whose root-mean-square of the amplitude
is almost 10 times the threshold.

G. Extent and accuracy of the analytical solutions

Various modern methods for solving the main prob-
lem of lunar theory were described in the preceding sec-
tion. Whereas SALE and ELE are at least partially ana-
lytic, ELP aims directly at finding the Fourier expansion
of the lunar trajectory with purely numerical coeffi-
cients, not unlike Airy’s method (see Eckert and Smith,
1966). All three calculations eventually yield the expan-
sions for the polar coordinates of the Moon: longitude,
latitude, and sine parallax. (The sine parallax is the ratio
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of the Earth’s equatorial radius over the distance of the
Moon, but this ratio becomes an angle if it is set equal to
the sine of an angle.)

The cutoff for the listing in ELE was chosen at
0.0000059 for the longitude and latitude, which allows
correct rounding to the fifth decimal. [The long-period
inequality (99) of Laplace barely makes the grade with a
coefficient 0.000005929.] This threshold is to be com-
pared with the largest terms, 22639.559 sin l in longitude
and 18461.40 sin F in latitude. They are generally agreed
as the best fit to the observations and effectively define
the eccentricity « and the inclination g (see the discus-
sion in Sec. X.F.) The cutoff for the parallax is
0.00000 019 and has to be compared (in this cosine ex-
pansion) with the constant term 3422.4529, which is
again generally agreed to be the best observed value.

The cutoffs were chosen somewhat differently in
SALE and ELP 2000, so that the total number of terms
in the expansions for the polar coordinates is not exactly
the same. For SALE, ELP 2000, and ELE there are
1177, 1024, and 1144 terms in longitude, 1026, 918, and
1037 terms in latitude, as well as 669, 921, and 915 terms
in parallax. The agreement between ELP 2000 and ELE
is practically perfect, with 1 coefficient in longitude dif-
fering by 2 in the last (fifth) decimal, 1 coefficient in
latitude and 3 in sine parallax differing by 1 in the last
decimal. The agreement with SALE in the last decimal
has only a few more discrepancies. This almost complete
coincidence between three large data sets that are based
on entirely different computations shows that the main
problem of lunar theory is solved correctly.

The reader might be interested in the distribution of
the coefficients c in the Fourier expansions according to
their size. Each bin is defined by its leading decimal
when c is written in seconds of arc. For the lunar longi-
tude and latitude we have, starting with log10 c>4,
through 4.log10 c>3, all the way down to 24.log10 c
>25; for the sine parallax the counts are shifted down-
ward by one bin. The number of coefficients in these
bins are: for the longitude (1, 2, 10, 14, 32, 56, 192, 154,
268, 376), for the latitude (1, 1, 5, 7, 31, 49, 94, 151, 220,
357), and for the sine parallax (1, 1, 3, 4, 19, 28, 55, 96,
140, 238, 328) with one additional bin.

Although these counts cover 10 powers of 10, no
simple model for the proliferation of terms in the Fou-
rier series seems to work well. If the series are truncated
by retaining only the terms with a coefficient above
some threshold, the neglected terms generate a noise
whose root-mean-square is larger than the threshold
roughly by a factor 10 (Gutzwiller, 1979). The data were
taken from the tables of Gutzwiller and Schmidt (1986),
probably the last and most accurate record ever avail-
able in print.

H. The fruits of solving the main problem of lunar theory

Artificial satellites for the Earth and other planets, as
well as a visit to the Moon by human beings, became a
reality shortly after lunar theory had arrived at a suffi-
ciently accurate and trustworthy solution of the three-



629Martin C. Gutzwiller: The oldest three-body problem
body problem Moon-Earth-Sun. This sequence of events
was no accident, of course; the scientific achievements in
celestial mechanics and the technical progress in more
mundane fields had grown simultaneously to the point
where they could be joined in one big adventure. But
nowadays the focus of general interest has completely
shifted away from dealing with the complicated motion
of the Moon; it is now concerned with the physical con-
stitution of our companion in space.

Nevertheless, the astronauts of the Apollo program
did some important work that is directly related to the
Moon’s motions. They left behind three ‘‘retroreflec-
tors’’ that form a triangle with sides of 1250, 1100, and
970 km. The laser light that is sent to the Moon with the
help mostly of the McDonald Observatory’s 2.7-meter
telescope (Silverberg, 1974) illuminates a spot of about 5
km in diameter. The reflectors send this light back ex-
actly where it came from so that their signal is 10 to 100
times stronger than the reflected intensity from the lunar
surface. By pulsing the light at rates of nanoseconds the
distance of the reflectors can be measured with an accu-
racy of a few centimeters, a 10210 fraction of the lunar
distance. Two reflectors that were left on the Moon by
unmanned Soviet vehicles returned the light only for a
few days, possibly because of the dust from their vehicle.

The reports from this program, such as the one by
Bender et al. (1973), make fascinating reading. Among
the scientific objectives that were perceived in 1964 and
that led to this Lunar Laser Ranging (LLR) experiment,
is listed in first place ‘‘a much improved lunar orbit,’’ in
third place the ‘‘study of the lunar physical librations,’’
and in fifth place ‘‘an accurate check on gravitational
theory.’’ This report already mentions a number of im-
portant advances in these three areas. French scientists
were involved in the whole endeavor from the beginning
(see Calame, 1973, and Orszag, 1973).

This section will give a very short summary of some
results related to these scientific objectives. The most
obvious improvement concerns the lunar parallax be-
cause its earlier measurements were always less direct
than those of the longitude and latitude, and also more
sensitive to the refraction of the Earth’s atmosphere. La-
ser ranging avoids the triangulation that used to be the
foundation for all distances in the solar system. The re-
port by Bender et al. (1973) already quotes corrections
to the lunar eccentricity, the mean longitude of the peri-
gee, and the mean longitude of the lunar center of mass.

Everybody knows from first-hand experience that the
Moon always turns the same side toward the Earth.
Physically, the Moon rotates around its own axis at the
same rate as it moves around the Earth. But the motion
around the Earth is not uniform because of the eccen-
tricity «>1/18 and the variation of Tycho Brahe. The
Moon’s orientation, however, is not coupled so strongly
that it follows the direction of the Moon’s center of
mass. Moreover, we profit from the inclination of the
lunar orbit and large parallax. The resulting changes in
the Moon’s appearance were well understood by the as-
tronomers in the 17th century; they reveal almost an
additional third of the remaining lunar surface.
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In 1693 Giovanni Domenico Cassini published the fol-
lowing three laws:

(i) the Moon rotates at a constant angular velocity of
one full rotation per sidereal month;

(ii) its axis is inclined by 2°30 with respect to the nor-
mal of the ecliptic (more exactly by 1°31 only);

(iii) the direction of the Moon’s axis, the normal to
the ecliptic, and the normal to the Moon’s orbit lie in
one plane.

In 1764 Lagrange won the prize of the French Acad-
emy in the competition to explain the libration of the
Moon, but he succeeded only in explaining the equality
of the mean motions in translation and rotation. He
came back to the problem in 1780 to explain the cou-
pling of the axes. Modern versions of this theory have
been offered by Koziel (1962) and Moutsalas (1971),
and further work presented in the volume edited by Ko-
pal and Goudas (1967), as well as that edited by
Chapront, Henrard, and Schmidt (1982).

With several reflecting telescopes on Earth sending
laser pulses, not only the distance but also the relative
orientations of the Earth and of the Moon can be deter-
mined. The centers of mass can be found and the figure
of the Earth can be checked out. The Moon is almost a
rigid body in contrast to the Earth. Not surprisingly, the
rotational motion of the Earth is more complicated and
of greater interest for us earthlings. A vast amount of
work is reported in the scientific literature that ties in
with LLR and with the dynamics of the Earth-Moon
system generally [see the collections of articles edited by
McCarthy and Pilkington (1979); Fedorov, Smith, and
Bender (1980); and Calame (1982)].

All these articles deal with problems of great technical
sophistication and are quite different in spirit from dis-
cussions of the Earth-Moon system like those collected
by Marsden and Cameron (1966). Although the rotation
of the Earth is again the central topic, the aim is an
answer to questions concerning the long-term history
and the constitution of our planet. At the same time,
different views on the origin of the Moon are proposed,
but the jury is still out on this issue after more than 30
years of deliberation. The Moon looks like an exception
rather than a representative of the rule among the sat-
ellites in the solar system.

The last argument in favor of LLR was to check on
gravitational theory. Indeed, the effects of general rela-
tivity on the motion of the Moon were discussed by de
Sitter (1916) immediately after solving Einstein’s equa-
tion for an isolated point-mass; Kottler (1922) gives an
early review in the Encyclopaedie der Mathematischen
Wissenschaften, where Pauli’s review of general relativ-
ity was published. Among the many papers on general
relativity in celestial mechanics, let me cite those of
Finkelstein and Kreinovich (1976) and Mashhoon and
Theiss (1991), who are particularly concerned with the
Moon. Without trying to discuss their results, however,
let me just make two comments of some historical inter-
est.

A glance at a standard textbook on general relativity
like that of Pauli (1921, 1958) shows that the Schwarzs-



630 Martin C. Gutzwiller: The oldest three-body problem
child metric adds a short-range force with an inverse-
fourth-power of the distance to the usual inverse-square
force of gravitation. That is exactly what Clairaut tried
to do in order to fudge the motion of the lunar perigee
and get over Newton’s frustrations (see Sec. VII.B). In a
completely different context, L. H. Thomas had studied
the effect of general relativity on the rotation of the
Moon in the early 1920s, a problem he considered rather
difficult. When he became interested in the spin of the
electron, he remembered his work on the Moon; his fa-
mous factor 1/2 in the formula for the spin-orbit cou-
pling of an electron then appeared without much effort,
as he used to say (see Misner, Thorne, and Wheeler,
1972).

I. The modern ephemerides of the Moon

The Fourier (epicycle) expansions for the polar coor-
dinates in the solar system were invented to make pre-
dictions before there was any physical understanding.
That method continued to be useful even after Newton
had shown that the problem is equivalent to integrating
some ordinary differential equations. But the advent of
electronic computing made it possible to integrate New-
ton’s equations of motion without worrying about
whether the solution has a good Fourier expansion or
not. Moreover, the size of the problem could be en-
larged to include many more than three bodies without
much increasing the technical difficulties. The main limi-
tation is the length of time over which the numerical
integration is valid, whereas the Fourier expansion is not
so limited.

The space agencies have come to rely on numerical
integration because they allow us to handle the realistic
circumstances, for example, to include the mass distribu-
tion in the Earth and the Moon in addition to the effect
of the other planets and relativistic corrections. The re-
sult is a complete mathematical description of the lunar
trajectory, exactly as it can be observed, not only as a
mathematical model like the main problem of lunar
theory. The various corrections to the main problem had
been worked out to some extent ever since the 18th cen-
tury, but it seems that there are so many complicated,
although small, effects that the analytical solutions are
unable to produce the required precision.

Jean Chapront and Michelle Chapront-Touzé (1982,
1983) have expanded their semianalytic solution of the
main problem (see Sec. XI.F) into a full-fledged ephem-
eris, ELP 2000, for the Moon. The perturbations due to
the planets, the shape of the Moon and the Earth, gen-
eral relativity were all included, and the result was com-
pared with the numerical integration of LE 200 from the
Jet Propulsion Laboratory (JPL). The same authors
(1991) also constructed a modern version of lunar tables
that are still in the form of trigonometric series, but with
the mean motions corrected with terms up to third and
fourth power in time going beyond Eq. (97). Fewer
terms are needed in the series, which is still able to rep-
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resent the lunar motions from 4000 B.C. to A.D. 8000
although with some significant loss of accuracy far away
from today.

For more than ten years, however, the ephemerides
used in the various national Almanacs and for the work
of the space agencies have been based on the numerical
integrations from JPL and MIT/CFA. They have been
developed in many steps of refinement ever since the
1970s, with the most recent version under the name DE
200/LE 200 (for development ephemeris and lunar
ephemeris) in a series of papers by Standish (1982), Ne-
whall (1983), Stumpff and Lieske (1984), and their col-
laborators. Some of this work is given in the list of ref-
erences; it deals with difficult issues such as the practical
definition of the inertial coordinate system, which can-
not possibly be discussed in this review with any kind of
depth. Nevertheless, some conclusions have to be men-
tioned because they show some of the essential differ-
ences between classical and modern astronomy.

Progress has not been as fast as one might think, how-
ever, since Calame (1982) still reported substantial dis-
agreements between different numerical ephemerides.
On the other hand, Kinoshita (1982) used numerical in-
tegration for the main problem of lunar theory to check
on the Fourier series that were obtained by the theore-
ticians. It turned out that ELP, and to a slightly lesser
degree SALE, essentially live up to their nominal accu-
racy, thus confirming their mutual agreement. Lieske
(1968) analyzed 8639 observations of the minor planet
Eros from 1893 to 1966 to get a better value for the mass
of the Earth-Moon system as well as for the solar paral-
lax. Soma (1985) went through thousands of lunar occul-
tations from the years 1955 to 1980 to check up on ELP
2000. Standish (1990) examined many sets of optical ob-
servations to check on the accuracy of DE 200 for the
outer planets.

There is no doubt in Standish’s mind, however, that
modern ephemerides for the Moon are best based on
the LLR measurements (see Williams and Standish,
1989, 1990). Optical observations are tied to the star
catalogues, which depend on the definition of the equa-
tor, the ecliptic, and their intersection in the equinox.
The error in laser ranging depends on only the pulse
width and the noise, but does not depend on the orien-
tation of the reference frames. The Moon’s longitude
with respect to the Earth is good to 0.0019, and its mean
motion to 0.049/century where one Julian century covers
1.73 1099. But in the long run there remains an uncer-
tainty of 19/cty2 in the secular acceleration. The agree-
ment with the optical observations also suffers from a
seemingly irreducible discrepancy of 19.

J. Collisions in gravitational problems

Starting with Lagrange and through the first three
quarters of the 19th century, it looked as if all the work
in celestial mechanics could be reduced to one general
method. Moreover, the source of all the difficulties ap-
peared to be hidden in the three-body problem, of which
the system Moon-Earth-Sun was the best-known ex-
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ample. There was hope that the general methods would
provide some very fundamental insights and yield a sat-
isfactory account of the general many-body problem.

This grand illusion was almost realized in the work of
Sundman (1913). He first showed that triple collisions
are not possible in the three-body problem if the total
angular momentum does not vanish. Then he used the
regularization of the double collision in the Kepler prob-
lem to show that such events do not destroy the smooth
behavior of the three-body trajectory and its analytic
dependence on time as well as on the other parameters.
Finally he was able to construct a general solution that is
analytic, i.e., it has a power-series expansion as a func-
tion of a timelike parameter (see Siegel and Moser,
1971). A tacit agreement seems to prevail among celes-
tial mechanicians, however, that this result is useless be-
cause the relevant series converge very poorly (Diacu,
1996; Barrow-Green, 1996).

When two mass points have a near collision they
make U turns around each other. The smooth limit of
such an event, in which the two masses head straight for
each other, is equivalent to the two bodies’ bouncing off
each other. Three-body collisions are quite different be-
cause there is no way to consider them as a smooth lim-
iting case. When three bodies nearly collide at the same
time, their kinetic energy and their (negative) potential
energy are very large, although their sum is small. The
scaling properties allow the problem to be reduced to
the case where the total energy vanishes. The problem
gets simplified, but the possibilities are still enormous
(McGehee, 1974, 1975).

Three-body collisions can no longer be excluded in a
gravitational problem with four or more bodies. When-
ever one tries to classify the motions in a many-body
system, it is crucial to understand what happens in a
collision. If initial conditions or other parameters are
changed continuously, the system may run into a colli-
sion. The two situations on either side of the collision
have very little in common if more than two masses col-
lide. Even the two-body collisions in the three-body
problem are sufficiently complicated to prevent a com-
plete classification of all three-body trajectories.

K. The three-body problem

Surveys of the general three-body problem are very
bulky, e.g., Hagihara’s Celestial Mechanics (1970–1976)
in five volumes, where the last four volumes have two
parts, each bound separately, and volume V with over
1500 pages is entitled ‘‘Topology of the Three-Body
Problem.’’ More recent monographs like The Three-
Body Problem of Marchal (1990) are heavy on numeri-
cal calculations. The motion of the Moon has a signifi-
cant overlap with the much smaller class of the restricted
three-body problem, where two large masses move
around each other on a fixed circular orbit, whereas the
third mass is assumed to be so small that it does not
interfere with the motion of the two large masses (Con-
topoulos 1966; Szebehely, 1967). Asteroids, space travel
between Earth and Moon, and satellites of binary stars
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belong in this class. The problem is usually treated in
two dimensions, so that Hill’s motion of the lunar peri-
gee becomes a special limiting case.

The main problem of lunar theory occupies a special
niche in the space of all three-body problems, and there
are many other niches of this kind. Since the Moon-
Earth-Sun system is important to us and we have many
precise observations, we have learnt a lot about this spe-
cial niche and we have started to explore the others. But
it is hard to carry our experience from the Moon-Earth-
Sun corner, say, into one of the asteroid corners. When
the mass ratios, the main frequencies, and the initial
conditions are modified so as to get from one niche to
the other, we shall find out that our solutions have only
limited validity.

The most dramatic event in a three-body system is the
ejection of one mass, e.g., the Earth could get a little
closer to the Sun and thereby provide the Moon with the
required energy for escape, from the Earth if not from
the solar system. Such ejection trajectories are hard to
come by, but some people believe that they are every-
where dense in phase space, like a fractal of very low
dimension. Indeed, the proliferation of terms in the Fou-
rier expansion of the lunar motion is not only a big nui-
sance, but could cover up what is known as Arnold dif-
fusion.

If the motion of the Moon is restricted to the ecliptic,
her trajectory can be viewed as filling a two-dimensional
torus in a three-dimensional phase-space, as long as the
Earth-Moon planet goes around the Sun on a circle (see
Sec. X.F.) If this circle is replaced by a more realistic
Kepler ellipse, the torus will breathe with the yearly
rhythm. Every invariant torus divides the phase space
into separate pieces, and any chaotic trajectory that
starts inside a torus cannot escape. If the Moon is al-
lowed to move at a right angle to the ecliptic, however,
her invariant torus is three-dimensional, while the phase
space gets five dimensions. Now, a chaotic trajectory is
no longer caught, although the escape in this kind of
Arnold diffusion always takes a very long time.

Poincaré was the first to make us think along these
lines. We have been able to amass a large store of indi-
vidual investigations in the last hundred years, most of
them coming from computers in the last few decades.
But we are still missing a general approach that allows
us to understand all the different kinds of behavior from
one common point of view.

The three-body problem teaches us a sobering lesson
about our ability to comprehend the outside world in
terms of a few basic mathematical relations. Many physi-
cists, maybe early in their careers, had hopes of coordi-
nating their field of interest, if not all of physics, into
some overall rational scheme. The more complicated
situations could then be reduced to some simpler models
in which all phenomena would find their explanation.
This ideal goal of the scientific enterprise has been pro-
moted by many distinguished scientists [see Weinberg’s
(1992) Dream of a Final Theory, with a chapter ‘‘Two
Cheers for Reductionism’’].
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Newton saw the motion of the planets in the solar
system as instances of the two-body problem. The ob-
served changes in their aphelia and eccentricities as well
as in the nodes and inclinations of their orbital planes
could only be detected after collecting data with instru-
ments over many years. The Moon is different: any alert
individual could watch her motion through the sky and
become aware of her idiosyncracies. Both her varying
speed and the spread of moonrises and moonsets on the
horizon proceed at their own rhythm, which is most
clearly displayed in the schedule of lunar and solar
eclipses. These rather obvious features are the most im-
portant manifestations of the three-body problem and
became the first objects of Newton’s attention.

Many physicists may be tempted to see in Newton’s
equations of motion and his universal gravitation a suf-
ficient explanation for the three-body problem, with the
details to be worked out by the technicians. But even a
close look at the differential equations (29) and (30)
does not prepare us for the idiosyncracies of the lunar
motion, nor does it help us to understand the orbits of
asteroids in the combined gravitational field of the Sun
and Jupiter. This review was meant to demonstrate the
long process of trial and error, including many interme-
diate stops, that finally led to the modern lunar theory.
The reader is expected to make a choice among the
many different pictures and explanations.

Since the equations of motion (29) and (30) can be
integrated on a computer nowadays, an option that was
not available a generation ago, they are sufficient for
some special purposes. The expansions (93) and (94)
give the whole story, but only if they are interpreted in
the light of some specific question or in order to carry
out some particular task. If we want to appreciate the
tremendous amount of information in these series, we
are almost forced to fall back on the earlier treatments
of the problem. They used a limited and perhaps primi-
tive, but also more explicit and direct approach that
made them more easily understood.

LIST OF SYMBOLS
A IV.F aphelion or apogee
D V.C l2l85elongation~Moon from Sun as seen

from Earth!
D X.C operatord/ idt in Hill’ theory
E IV.F Earth ~mass or location!
F V.B l 1g5argument of latitude
F VII.D angular momentum parameter in Clairaut

theory
F IX.C generating function for canonical transfo

mation

FY V.B Runge-Lenz vector for Moon’s motion
around Earth

G IX.B action variable conjugate tog
G0 II.J gravitational constant
H IX.B action variable conjugate toh
K II.C pole of the ecliptic
K IX.C action variable conjugate tok
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’s

r-

L IX.B action variable conjugate tol

LY V.B angular momentum of Moon with respe
Earth

M V.C Moon ~mass or location!
M (z) X.D function in the Moon’s variational equat
N II.B north pole
N(z) X.D function in the Moon’s variational equat
O IV.E center of the planet’s orbit
P II.B north pole
P IV.F perihelion or perigee
Q II.C reference point on equator or eclipse~equ

nox!
R VI.E distance from Sun to center of mass E

Moon
S IV.E Sun ~mass or location!
S8 IV.E equant point for planetary motion
T V.C synodic month~Sun to Sun!
T0 V.C tropical ~sidereal! year~equinox to equino
T1 V.C tropical ~sidereal! month ~equinox to eq

nox!
T2 V.C anomalistic month~radial motion!
T3 V.C draconitic month~motion vertical to ecl

tic!
V X.B quadrupole potential of the Sun near

Earth
W VIII.C perturbing solar potential

XY VI.E vector fromS to G

Z II.B local zenith
a V.C semi-major axis of Moon with respect

to Earth
a8 V.C semi-major axis of Earth-Moon with res

to Sun
c0 X.D Hill’s lowest-order motion of the perigee
cJul XI.B Julian century536525 days
f V.A Moon’s true anomaly~perigee to Moon!
f 8 IV.G planet’s true anomaly~perihelion to plane
g V.A angle from Moon’s ascending node to

gee
g0 X.E Hill’s lowest-order motion of the node

g81h8 VIII.G angle fromQ to perihelion
h V.A angle from referenceQ to ascending nod
k VII.D Clairaut’s semi-major axis parameter
k IX.C 5 f 81g81h8 ~mean longitude of the Su!
l V.B Moon’s mean anomaly with respect to E
l 8 IV.G planet’s mean anomaly with respect to
l 0 VIII.B Moon’s mean anomaly att50 ~epoch!
m VII.C n8/n5ratio of solar to lunar mean motio
m8 X.C n8/(n2n8)5ratio of solar to synodic me

motion
n V.C lunar meanmotion52p/T1

n8 V.C solar~Earth’s! meanmotion52p/T0

n2n8 X.C synodic meanmotion52p/T
r VI.E distance from Earth to Moon
r 8 VI.E distance from Sun to Earth
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s VII.C lunar parallax ~inverse distance! in Clair-
aut’s theory

t0 IV.G time of perigee~or perihelion! passage
u IV.D x1 iy5complex coordinate in ecliptic
v IV.H eccentric anomaly~angle from the center o

the orbit!
xY VI.E (x,y,z) Moon’s coordinates in the ecliptic

with respect toE

x⇀8 VI.E (x8,y8,z8) Earth’s coordinates in the eclipti
with respect to Sun

G VI.E center of mass for the Earth-Moon system
D X.D Hill’s infinite determinant for the motion of

the perigee
F VIII.E polar coordinate forG around the Sun
C VI.C total angle from one perigee to the next
V VII.C perturbation in Clairaut’s theory
V IX.B total Hamiltonian for the Moon-Earth-Sun

system
a II.C right ascension
a X.G a/a85distance of Moon/distance of Sun
b II.C latitude
b VII.E amplitude of Tycho Brahe’s variation
g V.A inclination of the Moon’s orbital plane
d II.B declination
d V.D amplitude of Ptolemy’s evection
« V.B eccentricity~of the Moon’s orbit around the

Earth!
«8 IV.C eccentricity~of the Earth-Moon’s orbit!
«0 II.C obliquity of the ecliptic

j⇀ VI.E vector from Sun to Moon

z II.B altitude
z X.C exponential exp~2it) in Hill’s theory
l II.C longitude of the Moon~later5l 1g1h!
l8 V.C longitude of the Sun~later5l 81g81h8!
m VII.C rate of angular increase for perigee
m IX.B reduced mass of Earth-MoonEM/(E1M )
n VII.K rate of angular increase for node
r VI.E distance from Sun to Moon
t II.C sidereal time
t X.C time variable in normalized synodic motio
f II.B geographic latitude
f VII.C Moon’s polar coordinate in~r , u, f!
c II.B azimuth
x II.B hour angle
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d’Alembert, Jean, 1743, Traité de Dynamique (David, Paris).
Reprint of the 2nd Edition, Paris, 1758, by Johnson Reprint
Corporation, New York, 1968.

d’Alembert, Jean, 1749, Recherches sur la Précession des Equi-
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