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Abstract

An embodiment of magnetized target fusion (MTF) with the potential that the drivers can be
positioned in a standoff distance from the site of the fusion burn is proposed. The magnetized
target plasma is formed out of two merging compact toroids, and is imploded by a spherical
plasma liner formed out of the merging of a number (nominally 60) of high momentum density
plasma jets. These plasma jets are produced by highly efficient electromagnetic accelerators.
They also carry the main fusion fuel. The implosion dynamics is studied in three phases: the
preliminary shock heating and compression, the acoustic compression, and the containment of
the burning target and liner. Mathematical models are developed to model these three phases of
the implosion dynamics, and have been implemented in a suite of computer codes. Preliminary
results produced by the models have been very encouraging, showing the great potential of the
proposed MTF scheme. The scheme has a low energy threshold for economic breakeven, and has
the potential of high wall-plug energy gain of more than 50 or so. Moreover, the pulsed power
drivers are very modest and can be accommodated with current state of the art and existing
facilities. The embodiment thus potentially provides a low-cost and fast R&D path towards
demonstrating practical fusion energy and followed-on commercialization.



1. Introduction

In magnetized target fusion (MTF), an imploding material liner is used to compress a magnetized
plasma to fusion condition and to confine the resulting burning plasma inertially to obtain the
necessary energy gain. By choosing a physics and engineering regime intermediate between the
two extremes of conventional magnetic confinement fusion (MFE) and inertia confinement
fusion (ICF), MTF seeks to avoid the physics and engineering problems of these two
conventional approaches to fusion.

Specifically, the density regime and time scale of MTF is intermediate between MFE and ICF.
This regime is important for three reasons. (1) Fusion reactivity scales as density squared, which
is increased by many orders of magnitude over conventional MFE. (2) All characteristic plasma
scale-lengths decrease with density. Hence, system size is naturally reduced at high density. (3)
The presence of the magnetic field in the target plasma greatly slows down the thermal
conduction losses to the material liner, thus allowing relatively slow compression to be used with
liner produced by highly efficient electromagnetic drivers. It reduces the required power and
precision to compress and heat plasma to fusion-relevant conditions compared with ICF, and
brings the pulsed-power requirements within reach of current state of the art. For these reasons,
MTF promises to be a low-cost approach to fusion1,2,3 .

Solid liners have been proposed for compressing the target for MTF, especially for a near-term
demonstration of the scientific principles of MTF.  One frequent criticism of solid-liner driven
MTF relates to its reactor potential. Though reactor scenarios have been proposed for solid-liner
driven MTF, critics of MTF have pointed out three potential practical difficulties with solid-liner
driven MTF. Firstly, the drivers for imploding the liner need to have sufficient stand-off distance
from the point of the fusion combustion for the hardware to be re-usable, and this might be
difficult to achieve in the case of solid liners.  Secondly, the cost of manufacturing the solid liner
tends to drive the economic breakeven energy level into the multi-gigajoule range, thus
increasing the initial capital cost of the power plant. Thirdly, the solid debris from the liner might
present a problem to the first wall of the reactor.

This paper is a response to these criticisms of MTF, by proposing an embodiment of MTF that
will avoid all these difficulties. In the proposed embodiment, a gaseous (plasma) liner is used
instead, and is formed in a standoff manner. It has a low energy threshold for economic
breakeven, and has the potential of high wall-plug energy gain of more than 50 or so. Moreover,
the pulsed power drivers are very modest and can be accommodated with current state of the art
and existing facilities. The embodiment thus potentially provides a low-cost and fast R&D path
towards demonstrating practical fusion energy and followed-on commercialization.
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2. The Proposed Approach

Figure 2.1 illustrates the scheme. Two compact toroids containing fusionable materials are
introduced into a spherical reactor vessel (typically about 2 m or more in radius) in a
diametrically opposing manner4,5  Embedded in the compact toroids are magnetic fields in force-
free Woltjer-Wells-Taylor’s state of minimum energy6 which are known experimentally to be
extraordinarily stable.  They collide in the center to form an initial magnetized plasma. A
spherical distribution of plasma jets are then launched from the periphery of the vessel,
coalescing to form a spherically converging plasma liner.  On impact with the central plasma, the
plasma liner sends a shock wave through it, shock heating it to some elevated temperature (above
a few hundreds eV).  The high temperature immediately raises the electrical conductivity of the
plasma to the extent that it traps the magnetic flux inside the central plasma. Because of the
dominant radial momentum density of the plasma liner, it continues to implode towards the
center. The target plasma is further compressed by the plasma liner and heated near-adiabatically
to conditions for thermonuclear burn, the magnetic flux being compressed with it, raising the
magnetic fields towards megagauss levels. The compression is near adiabatic for two reasons: (1)
the presence of the megagauss magnetic field strongly inhibits electron thermal conduction
losses by several orders of magnitude, (2) the plasma density of the central plasma is kept
relatively low so that bremsstrahlung losses are small. Synchrotron radiation losses can also be
shown to be negligible. The thermal loss rates are sufficiently low that the compression heating
can be achieved relatively slowly using plasma jets with velocity of the order of 10 - 100 cm per
microsecond. These plasma jets can be produced using Lorentz force coaxial plasma guns as
shown in Figure 2.2. The possibility of forming a plasma liner out of the merging of plasma jets
has been demonstrated experimentally by Degnan using a cylindrical array of plasma guns7.

The plasma liner is a composite structure consisting of two layers, an inner layer carrying the
main fusion fuel, and an outer tamping layer carrying a heavy gas such as argon. This composite
structure can be formed either as part of the process of refueling the plasma guns, or by a
properly synchronized launch of two sets of spherically distributed plasma jets, each set carrying
the required gas. The radial convergence of the plasma liner is halted abruptly by the nuclear
burning central plasma sending a stagnating shock expanding outwards through the plasma liner,
compressing the plasma liner to form a highly dense cold fuel layer on the inside. The cold fuel
layer is ignited by the nuclear burning central plasma serving therefore as a “hot spot”. The
pressure and the inertia of the shocked and compressed liner provide the inertia confinement for
itself and the nuclear burning hot spot. When the expanding shock wave reaches the outer
boundary of the plasma liner, the liner expands and a rarefaction wave emanates radially inwards
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Figure 2.1  Magnetized Target Fusion with an Imploding Plasma Liner



from the surface of this outer boundary.  This results in the expansion and the disassembly of the
plasma liner, terminating the confinement of the nuclear burning fireball.  The fusion
confinement time is approximately the sum of the transit time of the stagnating shock and twice
the transit time of the rarefaction wave through the cold fuel layer. If the cold fuel layer is
sufficiently thick and dense to trap and re-deposit a fraction of the energy of the charged particles
from the fusion reactions, it is possible for a fusion burn wave to spread through the cold fuel,
and thus multiplying the energy gain of the hot spot. Excessively high gain is not required here
as plasma accelerators are relatively efficient.

Figure 2.2  Coaxial plasma guns for producing the high velocity plasma jets

The conditions of the plasma liner and the target plasma at the instant of impact (engagement)
determines the subsequent dynamics of implosion. Typical parameters for the plasma liner at this
instant of impact are: velocity – 125 km/s, particle density – 1020 cm-3, total energy – 10 MJ.
Typical parameters for the target plasma at the instant of impact are: density – 1018 cm-3,
temperature – 2 eV, magnetic field – 1 T. Typical parameters for the target plasma at peak
compression to produce gainful fusion burn are: temperature – 10 keV, density – 1021 cm-3,
pressure – 30 Mbar, radius – 2.5 mm, confinement time – 0.05 µs.

The concept is an evolution from a combination of previously studied concepts including impact
fusion8, compression of compact toroids9, theta and spherical pinches10, and electromagnetic
accelerators11.
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3. The Contact Surface and Flux Trapping

A few fundamental questions about scheme need to be addressed at the outset: (1) Would a
contact surface be formed between the plasma liner and the target plasma to provide a “piston
head” in imploding the target plasma, or would the interpenetration of plasmas prevent such a
contact surface from being formed? (2) Would the magnetic flux be trapped in the target plasma
and be compressed by the liner?

The thickness of the contact surface is of the order of the collision length scales of the particles
in the liner. The collision length (mean free path) between the same species of particles in a
plasma is given by12,
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As we shall later, the shocked temperature of the liner initially is about 100 eV.  With a density
of the order of 1020 cm-3, the collision length can be estimated at about 10 µm. Since this is small
relative the spatial scale of compression, the formation of a reasonably well defined contact
surface can be expected. The stability of this contact surface during the implosion, however, is a
separate matter which is much more complex an issue and should be addressed in a future study
of the concept.

In order for the magnetic flux to be trapped within the target plasma during the implosion, the
plasma conductivity must be sufficiently high so that magnetic diffusion across the contact
surface is sufficiently slow compared to the velocity of implosion. The ratio of the rate of
implosion to the rate of magnetic diffusion is given by the magnetic Reynolds number of the
process,

lvRm µσ=

where µ, σ, and l are the permeability, conductivity and the spatial scale of the implosion. Using

a temperature of about 100 eV and a velocity of 100 km/s for the contact surface, and setting l to

be about half of the target radius, the Reynolds number is conservatively estimated to be at least
500. This is sufficiently large to ensure that magnetic flux leakage from the target plasma is
negligible during the implosion.

4. Implosion Dynamics: Physical Description

The parameter space relevant to MTF has been extensively studied by Lindemuth and
Kirkpatrick13, and Kirkpatrick, Lindemuth and Ward14. Presenting the results in a plane with the
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ion temperature and areal density (density-radius product) as coordinates (a Lindl-Widner
diagram), the emphasis of these studies is in identifying the region of the parameter space in
which fusion ignition would occur in the target, i.e. the condition of a positive rate of
temperature rise (dT/dt > 0) in the target is maintained by the fusion reactions occurring in the
target alone without further external energy input. Though target ignition is not a strict
requirement for a workable scheme here, it is desirable. Our first objective in the following
discussion is to explore the existence of practical target implosion trajectories leading to ignition.

There is, however, another important energetic consideration here, namely, the energy of the
liner required to achieve the target ignition conditions. This issue has been examined for solid
liners15 where it is found that typically less than one-fifth of the initial liner energy is transferred
to the target. We could expect a lesser proportion of the energy going into the target in the case
of a plasma liner as more energy would be expended as thermal energy in the plasma liner during
the implosion. On the other hand, the target gain has the potential of being amplified many times
by the fusion burning of a thin but dense inner layer of the plasma liner. Our second objective in
the following discussion is to provide estimates of the liner energy required to achieve the
desired implosion, and to provide some indications of the possibility of the fusion burning of a
thin inner layer of the liner.

A definitive study of these issues requires an accurate accounting of the energy deposition by the
fusion α particles in a strong magnetic field. While efforts are underway to develop more
accurate theoretical approaches and the computing methods to treat α-transport in a strong
magnetic field, for convenience, we will adopt here an approximate model of Kirkpatrick in
which an uniform azimuthal magnetic field is assumed to exist within the spherical volume of
the target plasma.

To begin the discussion, assume a plasma liner in the form of a spherical shell of finite thickness
converging on a target plasma which is also assumed to be spherical. As the plasma liner and the
target plasma are initially relatively cold with relatively low sound speed, when they collide,
shock waves are produced in both the target plasma and the liner. The shock in the target plasma
converges spherically towards the center and is reflected near the center. In time, the reflected
shock meets the radially converging contact surface giving rise to a second radially ingoing
shock in the target which is again reflected near the center. The process is repeated until the
radial momentum of the liner is totally dissipated, at which point the target and the liner have
reached their peak compression. By design, the first ingoing and reflected shocks in the target are
strong. The passage of these two shocks, however, heats the target to a sufficiently high
temperature that the subsequent reflected shocks are relatively weak. The associated compression
of the target plasma resulting from these weak shocks is more or less acoustic. If the magnetic
field in the plasma is sufficiently high to provide the required degree of magnetothermal
insulation, then the subsequent acoustic compression is nearly adiabatic.

The stability of this acoustic implosion phase is critical to the success of the scheme, and is
determined by the Rayleigh-Taylor instability. In this study, we assume that the Rayleigh-Taylor
instability becomes significant only for implosion with radial convergence of more than a factor
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of 10. Accordingly we limit the radial convergence during the acoustic implosion to be less than
10. It must be appreciated that the driver of Rayleigh-Taylor instabilities during the implosion is
the significant deceleration of the liner due to the pressure build-up in the target and the adverse
density gradient across the target-liner interface. During the merging and coasting of the liner
towards the target prior to impact, both the deceleration and density gradient are not sufficiently
adverse to produce any significant growth rate for the Rayleigh-Taylor instabilities in the liner.
Thus the radial convergence of the liner itself prior to its interaction with the target is not
significantly subjected to this mode of instability.

After peak compression is reached, further advance by the liner is halted by the immense
pressure developed in the target. A stagnating shock propagates outward in the liner with a
“piston” speed approximately equal to the local inward flow speed before the arrival of the
stagnating shock. When this stagnating shock reaches the outer boundary of the liner, a
rarefaction wave propagates backwards towards the center. The confinement time for the target
plasma is approximately the transit time of the stagnation shock plus twice the transit time of the
rarefaction wave. During this period, the target plasma is designed to ignite or burn.
Furthermore, the fusion α-particles leaving the target plasma still carry sufficient energy to cause
an inner layer of the liner to burn (ignition is not required for the liner) to produce amplification
of the energy gain of the target. The burn time for this inner “cold fuel layer” of the liner is
approximately twice the transit time of the rarefaction wave.

5. Implosion Dynamics: The Mathematical Models

A succinct presentation of the mathematical models for analysing the concept is given here in
support of the objectives of the present paper. Detailed discussion of the mathematical models
are presented elsewhere.

5.1 The Preliminary Shock Heating and Compression of the Target Plasma

For the first ingoing shock, the Hugoniot jump conditions across the shock give the density (ρi),
pressure (pi), and temperature (Ti) behind the shock front in terms of the initial target density (ρ0)
and temperature (T0) as,
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assuming the shock to be infinitely strong (upstream Mach number M → ∞) where mi is the ion
mass, uc is the velocity of the contact surface, and Zi is the effective charged state of the ions.
The radially converging flow following the shock compresses the gas adiabatically by another
factor of 4.719 for a gas with γ = 5/3 according to Lazarus and Richtmyer16. The temperature rises
by a factor of 2.813 associated with this adiabatic compression. The interaction of the ingoing
flow with the stagnating flow near the center produces a reflected shock with a strength (pressure
ratios) of 2.55. The corresponding upstream Mach number is 2.24, giving rise to a density
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multiplication factor of 1.71 and a heating factor of 1.49667. The net density compression factor
after the passage of the first ingoing and relected shock is thus 32, whereas the target plasma
temperature is raised to the value T2s given by,
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Denote the liner velocity before its collision with the target plasma by ul,o. On impact with the

target plasma, the liner sees a “piston” velocity of ul,p = ul,o – uc producing a shock propagating

outwards relative to the liner. The resulting velocity of the contact surface uc is one that results in
a shock pressure in the liner that maintains pressure continuity across the contact surface. If the
initial unshocked (upstream) pressure in the liner is pl,o, applying the shock Hugoniot across the

shock front in the liner gives the relationship,

( ) ( )[ ] [ ]20,0,
2
,0, 11

2
1

llll ppppu iip −=−++ γγρ (5.3)

Together with the expression (5.1) for the interfacial shocked pressure pi, the two equations may
be solved for the initial velocity of the contact surface uc and the pressure pi. In dimensionless
form, the two equations may be reduced to one in terms of the upstream Mach number, Ml,s, of

the shock front in the liner:
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where cl,0 is the acoustic speed in the liner before colliding with the target plasma.  We note that,

in equation (5.4), 0, =sM l
 when the right hand side ( ) 012

, =−− sMM llδ , or equivalently,

when 2/1 lM=δ .  This is the case when the impact is perfectly matched "acoustically" for the

liner, resulting in no shock ( 0, =sM l
) in the liner. For the case γ = 5/3, this condition reduces to

requiring the liner velocity to be given by ( )( ) 0,00,209 lll cu ρρ= .  The resulting

instantaneous velocity of the contact surface equals this velocity.  Equivalently, the resulting
instantaneous shocked pressure in the target plasma at the interface is equal to the liner pressure
(pl,0) prior to impact.  The liner velocity and pressure refers to these quantities at the inner

surface of the liner.

5.2 The Accoustic Implosion Phase With Magnetic Thermal Insulation

The D-T reaction is selected for this first study, though the mathematical model developed may
be extended to apply to other fusion reactions. The evolution of the target plasma temperature is
governed by the energy equation,
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where N is the number of deuterons in the target plasma, αE∆ is the amount of energy deposited

by an α-particle in the target, rN&  is the rate of fusion reactions, cQ&  is the thermal conduction

loss rate, radQ&  is the radiative loss rate, p is the target plasma pressure and V&  is the rate of

change of the target volume, BE&  is the rate of increase of the target magnetic energy, and kE&  is

the rate of change in the target kinetic energy. An equal mixture of D and T is assumed. The
expressions for these quantities are given respectively by,
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where rb is the target plasma radius, V is its volume, ub is its surface radial velocity, mt is its
mass, and Tb is the temperature of the “cold” boundary in contact with the liner (about 100 eV).
Np is the total number of particles (deuterons, tritons, and electrons) in the target plasma, and we
have assumed that any fusion α-particles are instantaneously lost from the target after depositing
a certain amount of energy ∆Eα in the target. SI units are used in the expressions throughout this
Section, including the expressions that follow, except in the expression for synchrotron radiation
above where the electron temperature is given in keV. The parameter g in the thermal conduction
loss rate is a shape factor for the temperature profile within the target. For a parabolic
temperature profile, g = 1.25.  The thermal conductivities, ie ⊥⊥ κκ  and , are Braginskii

conductivities in the form given by Sheehey17.  For the electron-electron (τee) and ion-ion (τii)
collision times, we adopt the form for the collision time (τ) between like species given by
Gross18.  For α energy deposition ∆Eα in the presence of a magnetic field, Kirkpatrick19 provides
the following expression for the fractional α-deposition,
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where B is the constant azimuthal magnetic field, r is the radius of the plasma sphere, ρ is its
mass density, and f0(ρr) is the fractional α-deposition in the absence of the magnetic field.
Expression (5.6b) was obtained by Kirkpatrick by fitting the analytical expression to the
numerical results from an extensive run of a particle-tracking code. For α-deposition in the
absence of the magnetic field, we use Evans' theory20 in which the average spatial loss rate in
energy by an ion of energy E, mass m and charge Ze to a particle species j in a plasma at a
temperature Tj, mass mj and charge Zje, is found to be,
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The loss rates to the ions and electrons are computed -
separately and then summed.

5.3  The Structure of the Plasma Liner

Assuming the jets merge to form a steady-state gas shell
with radial flow prior to impact, the flow velocity and
density profiles may be computed by solving the steady-
state fluid equations for mass and momentum
conservation,
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Furthermore, if we assume that the flow is polytropic
with a polytropic index of Γ, these equations can be
reduced to a single ordinary differential equation for the
velocity profile, ( )ξψ , in dimensionless form,
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where c (= γp/ρ) is the local sound speed at the position r, ub, rb, and Mb are the velocity, radial
coordiate and the local Mach number of the inner surface of the liner respectively. The pressure,
density and local sound speed at a point interior to the liner are given respectively by,
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where the subscript b refers to the inner surface of the liner. The velocity and density profiles
obtained by a numerical solution of equation (5.8) for the case Mb = 1+ are shown in Figure 5.1.
Note the very steep gradient of both the density and the velocity profile near the interface. Note
also that the knee of the velocity profile occurs around ξ ~ 4 and asypmtotes to a value twice its

value at the interface. For 12 >>M , the equation has the asymptotic solution,
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If the flow within the liner is adiabatic, then the polytropic index coincides with the ratio γ for
the specific heats of the gas.

The total mass, thermal energy and kinetic energy of the liner are given respectively by,
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5.4 Target Confinement

The flow in the liner starts out highly supersonic with the local mach number Mb at the inner
surface of the liner exceeding the value of 10 typically. By design, the initial momentum density
of the liner is chosen to be such that compression of the target proceeds with very little resistance
until near the point of turn-around. Near the point of turn-around, the sudden build up of pressure
in the target and in the liner causes the flow in the liner to experience a rapid transition to a
subsonic flow. A singularity is apparent in equation (5.8) at M = 1. Before the subsonic
transition, equation (5.8) gives a reasonable approximation to the flow. It is used to compute the
liner profile (velocity ur(r), density ρ(r), and pressure p(r)) down to the point when the local
mach number Mb at the inner liner surface is nearly 1. At this point maximum compression in the
target and liner is essentially attained, and a stagnation shock propagates outwards halting the
converging flow in the liner. The “piston” speed of this stagnation shock is the local flow speed
ur. Thus, assuming that it is a strong shock, the local speed of the stagnation shock front is
( ) .2/1 ru+γ  The transit time for this stagnation shock is approximated by the integral,
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where the dimensionless velocity profile ( )ξψ  is calculated from equation (5.8) with Mb = 1+, as
shown in Figure 5.1.

When the stagnation shock reaches the outer boundary of the liner (r = ra), a rarefaction wave
propagates backwards. The rarefaction wave speed is approximately the local speed of sound.
Hence an estimate of its transit time may be given by,
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where cs(rs) is the local sound speed at the shocked radial position rs. After the passage of the
stagnation shock, the shocked density ρs(rs) and the shocked pressure ps(rs) at the shocked
position rs, are given respectively by,
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where ρ(r) and ur(r) are the density and velocity at the unshocked position r before the passage
of the stagnation shock. The shocked (rs) and unshocked (r) coordinates are related by mass
conservation as,
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The rarefaction wave transit time integral is accordingly given by,
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The target confinement time is taken to be,
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5.5  Estimating the Yield from the Burning of the Cold Fuel Layer

Let εs(rs) be the energy density at the position rs after the passage of the stagnation shock, but
before the passage of the alpha particles streaming outwards from the fusion burning target.
After the passage of the alpha particles, the energy density at the point is increased by the energy
deposition by the target alpha particles. The resulting energy density and temperature at the
position rs in the liner are,
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where 
( )
DT

ss
DT m

r
n

ρ= , and Nα is the cumulative (total) number of alpha particles passing through

the spherical shell at position rs.  The spatial rate of energy deposition by the alpha particles to

the plasma, 
′

−
dr

Ed α , is given by Evans’ theory, expression (5.6c). This is calculated using the

density and temperature profile of the liner before the passage of the alpha particles. The
decrease in the energy of the alpha particle is accounted for by integrating Evans’ equation (5.6c)
over this profile for the passage of the alpha particles through the liner. Knowing the temperature
T, the local fusion reactivity vσ  and the fusion reaction rate can be determined. The burn

fraction fb at this position follows if the burn time is known.

We have not taken into account the increase in the temperature of the liner and the fusion
reactivity due to the energy deposition of the new alpha particles born of the fusion in the liner.
Thus yield enhancement of a propagating burn through the liner has not been included here. On
the other hand, this increase in temperature and pressure would lead to a local expansion and a
consequent reduction of fusion reactivity and its yield. Overall we expect that the results
produced here are a conservative approximation and the overall fusion yield is likely to be larger
than what we present here.

Most of the burn in the liner occurs in a very thin inner layer (of the order of several to a few tens
of µm’s) of the liner where the density is high. The burn time for this thin inner layer is taken to
be twice the rarefaction wave transit time tr as given by experession (5.15). The total fusion yield
from the burning of the cold fuel layer is estimated by integrating the fusion energy density over
the volume of the burning layer in the liner, thus,
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5.6  Implementation

The mathematical models were implemented in a suite of MATLAB codes. Detailed
documentation of the codes is given elsewhere21. The analysis begins by specifying the target
radius, ion density, temperature and magnetic field at the moment of impact with the liner. The
impact is assumed to be acoustically matched for the liner. The shock compression and heating
are calculated according to the theory developed in section 5.1. The resulting target conditions
are then used as the initial conditions for the set of ordinary differential equations (5.5) and (5.6)
of section 5.2 governing the acoustic compression of the target.

The differential equations are integrated using a 4th-order Runge-Kutta method. During the early
stages of the acoustic compression, because of the overwhelming momentum density of the liner,
the trajectory is more or less linear. In the calculation, a linear trajectory is assumed until desired
peak compression is nearly reached. To provide a smooth transition to the state in which the liner
is stationary, when the time is within 10% of the instant of peak compression, a quartic time
dependence of the target radius is assumed until the target radius reaches a pre-assigned
minimum value. After this instant, the target radius is kept constant computationally for a length
of time which is the target and liner confinement time as defined in Section 5.4.  Time
integration of the differential equations is continued until a preset instant, giving the temperature,
the cumulative number of fusion reactions, and the alpha energy deposition in the target versus
time. The p-dV work done on the target is also accumulated versus time.

The peak pressure of the nuclear burning target and the confinement time together determines the
pressure, density and the thickness of the stagnated liner, and hence the energy in the liner at
stagnation. Adding to this the energy required to perform the p-dV work on the target, and the
shock heating and compression due to the first ingoing and reflected shock, gives the minimum
kinetic energy the liner must have initially. The maximum pressure experienced by the target up
to a particular instant t determines the inner pressure pb of the liner required to confine the target.
Following Section 5.3 above, the profile of the liner at peak compression is taken to be its profile
when the mach number Mb of the flow at the inner liner surface is ~ 1+. By similarity of the flow,
the flow velocity at the inner surface at impact is approximately the asymptotic value of its
velocity profile at peak compression, assuming a compression ratio > 4.  The flow velocity at the
inner liner surface at peak compression is thus about half the contact surface velocity at impact
(ub ~ 0.5 uc). The inner liner density is determined from these data as 2

bbb cpγρ = .  With the

value of ub known, the required confinement time determines the dimensionless position ξa of
the outer boundary of the liner through the relationship (5.15). The integrals (5.11) then give the
mass and energy of the liner at this position required to confine the target in pressure and time.
The fusion yield of the liner follows from the expressions (5.16) and (5.17) of Section 5.5 given
the fusion yield from the target and the liner profile.

Finally, the structure of the liner prior to impact is calculated by requiring mass and energy
conservation. Thermal losses from the liner are ignored (liner performance is expected to
improve if thermal losses from the liner are taken into account as they would produce a colder

                                                  
21 Y.C.F. Thio, Computer Codes for Modeling the Implosion of a Magnetized Target Plasma by a Spherical Plasma
Liner, Center for Space Plasma and Aeronomic Research Report, University of Alabama, Huntsville, Alabama,
December, 1998.



and denser liner). The energy of the liner prior to impact is the sum of the energy required to
produce the first ingoing and reflected shocks in the target, the p-dV work on the target during
the acoustic compression of the target, and the energy of the liner at peak compression.

6. Implosion Dynamics: The Numerical Results and Discussion

Computations are conducted here only to show the existence of realizable implosion trajectories
to produce substantial fusion yield and meaningful gain, and to illustrate the profound effect the
magnetic field has on the outcomes. Extensive parametric studies are left for the future. A small

number of cases are computed here for an almost arbitrarily chosen implosion velocity of 125
km/s. The radius and the DT ion density of the target at impact with the liner are chosen to be 50
mm and 1024 m-3 respectively.  After the first ingoing and reflected shocks, the target shrinks to a
radius of 15.8 mm and a shock heated temperature of about 283 eV, quite independently of its
initial temperature. The computation proceeds to model the thermal evolution of the target
plasma as it is acoustically compressed down to a preset radius of 2.5 mm. The acoustic radius
compression ratio is 6.3. The target is then computationally maintained at the minimum radius
for a length of time which is the confinement time of the target as defined in Section 5.4. The
thermal evolution of the target and the consequent fusion yield from the target and the liner is
critically affected by the presence of the magnetic field and is illustrated here for four cases of
the initial magnetic field in the target at impact. The computation then proceeds to determine the
total liner energy required to confine the target as a function of the confinement time. For the
same peak target pressure, the longer the confinement time required, the thicker is the liner and
thus the larger is its thermal energy at stagnation. The principal computational results are
summarized in Table 6.1.

Case # #1 #2 #3 #4
Target B field at impact (T) 2 1 0.5 0
Target B field after the first two shocks 20.2 10.1 5 0
Radial convergence factor due to acoustic
compression

6.3 6.3 6.3 6.3

Maximum target temperature (keV) >36 9.96 8.3 1.5
Confinement time allowed (µs) 0-0.2 0-0.2 0-0.20 0-0.2
Target fusion yield (MJ) 0-216 0-52 0-9.1 0.0023
Liner fusion yield (MJ) 0-1220 0-1150 0-646 0
Liner energy (MJ) 0-94 0-38 0-32 4.4
Maximum system (target + liner) net gain 56 70 28 0.0017
Confinement time at max. gain (µs) 0.029 0.057 0.085 0.0078

Liner energy at max. gain (MJ) 11 13.7 15.7 1.1
Fusion yield at max. gain (MJ) 619 962 433 0.0019
Minimum liner thickness at max. gain (mm) 1.6 3.1 4.5 0.42
Ion density at the inner liner surface at peak
compression at max. gain (m-3)

3.7×1030 2.6×1030 2.2×1030 4×1029

Target system gain (target yield/total input) 1.4 1.3 0.54 0.002

Table 6.1. Summary of cases computed and discussed.



A typical set of the modeling results are shown in Figures 6.1 (a) – (f), in which the case for an
initial magnetic field B of 2 T in the target is illustrated. The target temperature (labeled T), the
burn fraction of the target (labeled fb) and the mean fractional alpha deposition in the target
(labeled fα) versus time measured from the end of the first ingoing and reflected shocks are
shown in Figure 6.1(a). The temperature rises sharply when the target radius falls below 3 mm.
When the compression stops, the target temperature is 12 keV. However, the target temperature
continues to increase after the compression stops, climbing to about 36 keV after a target
confinement time of 200 ns. Ignition occurs because of the high magnetic field of 800 T present
in the target at peak compression. The high magnetic field gives rise to a high degree of α-
deposition, reaching almost 40% just after peak compression is reached when the density is high
and the temperature is not so high. The target burns rapidly generating a yield of nearly 216 MJ
after having been confined for 200 ns, as shown in Figure 6.1(b). The same figure shows also
that the total amount of energy invested in the target is 2.8 MJ. Defining self gain of the target as
the ratio of target fusion yield to the energy invested in the target, the self gain of the target in
this case is around 80.

The fusion yield from the target is amplified by the burning of a thin but very dense layer in the
inner surface of the liner. The ion density in the inner surface of the liner reaches over 3.7 × 1030

m-3 at peak compression in this case as shown in Figure 6.1(f). At this density, the α-energy is
rapidly absorbed in an extremely thin layer of the liner. The DT in this thin layer burns rapidly
releasing nearly 1.2 GJ of fusion energy in less than 200 ns as illustrated in Figure 6.1(d).
However, in order to provide a confinement time of 200 ns, the total energy required by the liner
is 94 MJ. Defining the net gain Qnet to be the ratio of the total fusion yield to the total liner
energy required, this gives a net gain of only 15 if a liner is used to provide a confinement time
of 200 ns.

We note, however, that in this case, a confinement time of 200 ns is excessive and is not
optimum with respect to net gain of the system. This is illustrated in Figure 6.1(c) in which the
net gain is shown as a function of confinement time. The net gain peaks at a value of 56 for a
confinement time of about 29 ns. The liner that provides this confinement time requires only 11
MJ of energy. The total fusion yield in this case is 619 MJ. The liner amplification, defined as
the ratio of the liner yield to the target yield, is shown in Figure 6.1(d) as the curve labeled A. It
peaks at a value of about 39 for about the same confinement time also. The burning of the liner
occurs only in an extremely thin inner layer of the liner in which the α-particles originating from
the target are totally absorbed because of the high density and the low temperature in the layer.
Since burn propagation is not provided for in the present model, the fuel in this layer becomes
depleted with increasing degree of burn. Therefore, the yield from this liner layer gradually
plateaus (Figure 6.1(d)) while the required liner energy increases almost linearly with
confinement time. This leads to a decline in liner amplification and net gain with confinement
time after a peak is reached.

Finally, the liner thickness and density at various radial position as a function of confinement
time are shown in Figure 6.1(e) and (f) respectively. The mathematical model as developed in
Section 5.3 assumes that the flow profile in the liner is self similar with respect to its radial
position. Thus its thickness scales linearly and its density inversely with the cube of its radial
position.  If the liner is formed at 0.25 m away from center, then its thickness and density at



formation are shown by the curves labeled f in Figure 6.1(e) and (f) respectively. Though the
density of the compressed liner is high, its density at formation by the merging of the plasma
jets, is relatively low, of the order of 2.4 × 1024 m-3. The velocity of the liner at this position is
about 128 km/s. These numbers of are indicative of the properties of the plasma jets required to
form the liner.

In Figure 6.2 (a) – (d), the performance of the system is studied as a function of the initial target
B field, as well as the target confinement time. Four values of the initial B field (B(0)) are used:
2, 1, 0.5 and 0 T, with the case of 2 T treated in Figure 6.1 included as a reference. The thermal
evolutions of the target for the various initial B fields are shown in Figure 6.2(a), the net gains in
Figure 6.2(b), the required liner energies in Figure 6.2(c), and the total fusion yield in Figure
6.2(d).

As expected, in the case B(0) = 0, there is no magnetothermal insulation and the target hardly
gets above 1.5 keV in temperature. No meaningful fusion yield occurs in this case.

In the cases where B(0) = 0.5, 1, and 2 T, the effects of magnetothermal insulation are clearly in
evidence. The temperature development follows similar trajectories for the three cases up to the
point when the compression stops. At this point, the target with a B(0) = 0.5 T cools rapidly,
indicative of the high rate of the thermal losses despite the presence of relatively strong magnetic
field (200 T). Although the target temperature reaches 8.3 keV, the fusion rate and the α-
deposition rate were not sufficiently high to maintain the temperature and the burning of the
target. No target ignition occurs in this case. However, we note that the system consisting of the
target and the liner together still gives rise to a significant net gain which peaks at about 28 for
85 ns of confinement, giving a total fusion yield of 433 MJ and requiring only about 16 MJ of
liner energy. For the case with the highest B(0) of 2T, the target temperature continues to rise
because, with the target magnetic field at 800 T at peak compression, the α-deposition rate and
the magnetothermal insulation are sufficiently high to produce ignition in the target. The net gain
peaks in this case at 56 after 29 ns of target confinement, yielding 619 MJ of fusion energy with
11 MJ of energy input into the liner.

The real surprise is the existence of an intermediate value between 0.5 and 2 T, namely the case
with B(0) = 1 T, where the net gain of the system actually rises above that of the case with B(0) =
2 T.  A net gain of 70 was attained in this case after a target confinement time of 57 ns, yielding
962 MJ of fusion energy for only 13.7 MJ of energy input. The reason for this is that, while the
fusion and α-deposition rate was such that the burning occurs below but at the verge of ignition,
the fractional α-deposition rate in the target was lower than the case for B(0) = 2 T, allowing
therefore a higher α energy flux into the liner. This gives rise to a higher heating rate of the inner
layer of the liner. The necessary burn temperature in the liner for maximum fusion yield was
reached in a shorter confinement time, requiring therefore less energy for the liner, resulting in a
higher net gain. Notice that the total fusion yield plateaus in this case after the maximum gain
was reached as illustrated in Figure 6.2 (d). This is evident of the ‘burn-out’ of the inner liner
layer due to a combination high temperature and high density. In the present model, radiative and
conductive thermal transport in the liner are neglected, so also the effect of local hydrodynamic
expansion. These assumptions are likely to break down under these circumstances. Future studies
should address these effects.
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Figure 6.1. Case A-1: B(0) = 2T, ni(0) = 1 ×1024 m-3, vb(0) = 125 km/s, T(0) = 10 eV, r(0) = 50
mm, rp = 2.5 mm.
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Figure 6.2.  Performance as a function of the initial magnetic field in the target and
confinement time. The different curves are for four different values of the initial target
magnetic field: 0, 0.5, 1, and 2 T.



7.0 Conclusion

An embodiment of magnetized target fusion (MTF) with the potential that the drivers can be
positioned in a standoff distance from the site of the fusion burn is proposed. The magnetized
target plasma is formed out of two merging compact toroids, and is imploded by a spherical
plasma liner formed out of the merging of a number (nominally 60) of high momentum density
plasma jets. These plasma jets are produced by highly efficient electromagnetic accelerators, the
efficiency of which is expected to exceed 50%. They also carry the main fusion fuel. The
implosion dynamics is studied in three phases: the preliminary shock heating and compression,
the acoustic compression, and the containment of the burning target and liner. Mathematical
models are developed to model these three phases of the implosion dynamics, and have been
implemented in a suite of computer codes. Preliminary results produced by the models have been
very encouraging, showing the great potential of the proposed MTF scheme. The presence of the
magnetic field in the target has profound effects on the implosion trajectories and the consequent
fusion yield. The liner requirement to confine a specific target is a function of the confinement
time and the initial magnetic field in the target, which together dictates the fusion yield from the
target.

The model is applied to study the liner requirements to implode a specific target with an initial
radius (50 mm), an initial DT density (1024 m-3) to a final radius (2.5 mm) with an initial
implosion velocity (125 km/s) at impact with the liner, versus the length of confinement time.
Carrying out the computation for four discrete values of the initial target magnetic field (0, 0.5, 1
and 2 T), we found that: (1) The target temperature exceeds 8 keV in all cases except the case of
no magnetic field, in which case, the temperature hardly exceeds 1.5 keV; (2) All cases produce
substantial fusion yield with a significant system net gain except for the case with no initial
magnetic field; (3) Substantial fusion yield with a significant system gain exceeding 28 can occur
even without ignition in the target; (4) Ignition occurs for an initial magnetic field > 1 T;  (5) For
a particular value of the initial magnetic field, the system net gain increases at first with
confinement time, reaches a peak and then declines with further increase in confinement time.
(6) The maximum gain achieveable does not increase indefinitely with increasing initial
magnetic field; rather, the maximum gain peaks at some value of the initial magnetic field; in the
present case, it peaks near an initial magnetic field of 1 T; for this value, the maximum system
gain occurs for a confinement time of 57 ns, with a total fusion yield of 962 MJ, requiring only
13.7 MJ of energy input into the liner and target, giving a net system gain of 70. Because
electromagnetic accelerators are highly efficient, gains such as this or lower are more than
adequate for a practical system for economical power generation. In this sense, these gains are
relatively high for practical purposes. If the liner is formed at 25 cm from the center of
implosion, the DT density of the liner is of the order of 1.6 × 1024 m-3, which is indicative of the
density of the plasma jets required.

The results show that further exploration of the concept are highly warranted. Parametric studies
are needed to elucidate the scope of the practical potentials of the concept. The feasibility of
merging the jets to form a spherical and/or cylindrical liner is a fundamental issue that warrants
immediate attention theoretically and experimentally. The stability of the contact surface during
the shock and acoustic compression phase should be investigated, so also are the effects of
radiative and conductive thermal transfer on the structure of the liner. The potential enhancement



of the nuclear burn produced by a secondary implosion of the target caused by the burning of the
inner layer of the liner should also be explored.
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