INERTIAL FUSION ENERGY DEVELOPMENT PLAN STRATEGY

Speaker: E. Michael Campbell

Secretary of Energy Advisory Board Task Force on Fusion Energy Third Meeting Lawrence Livermore National Laboratory May 26–27, 1999

- IFE provides a complementary approach to MFE
- DOE-Defense Programs support provides a <u>significant</u> and <u>timely</u> opportunity for developing IFE
- IFE satisfies requirements for fusion energy development
 - Significant scientific/technological progress to demonstrating ignition and propagating TN Burn
 - Fusion power plants which can satisfy cost, environmental and safety goals
 - Phased delvelopment plan which balances risk and cost with deliverables and metrics
 - Scientific and technological richness
- IFE portfolio approach allows breadth of options (drivers, target concepts, chambers) to be explored

Inertial fusion energy (IFE) power plants of the future will consist of four parts

Inertial confinement fusion and high energy density science have been primarily developed in facilities constructed by DOE Defense Programs

Significant contributions from international community (including OFES supported U.S. facilities) have also been made

- The fusion community (magnetic and inertial) has worked together to develop a road map for advancing fusion energy
- Road map essentials
 - Rollback from the "end product" goal
 - Broad portfolio that balances risk and expenditure and encourages innovation
 - Develops a common framework for all approaches (with recognition of differences in approaches)
 - Metrics to judge progress
 - Peer review
 - Assessment periods (next one in ~three–four years)

L

Levels of development roadmap

02-01-0599-1165 25EMC/jco

The Inertial Fusion Development Strategy is integrated with the Fusion Energy Road Map

The IFE Program would engage the integrated fusion road map at three levels over the next 4–5 years

- Performance extension (DOE DP funded) — NIF construction completion
- Proof of principle
 - Electra (KrF) and supporting science/technology
 - Mercury and supporting science/technology
 - Heavy ion science/technology
- Supporting science/technology
 - Chamber designs/materials
 - Target fabrication and injection
- Concept exploration
 - Fast ignition
 - Rep-rated Z pinch
 - Ion concepts (variable ion mass, target concepts)
 - Indirect drive with lasers

Deliverables (with budget requirements) for all areas have been developed for Phase I

The Phase 1 goals for HIF have been developed

	NOW	Phase 1 goals	Power plant
Beam experiments	~10 mA; ~1 MeV; correct dimensionless parameters	~1 A; 1–10 MV; preserve	~1 A/beam ^a ; > 1 GeV; adequate brightness
Injector	1A, 1 beam	~1 A/beam multi- beam module	~1 A/beam, multi- beam injector
Component technology unit costs	~3× higher than driver goal	~2× higher than driver goal	~\$0.5 B
Simulation	End-to-end in 2-D; sections in 3-D	End-to-end in 3-D	End-to-end in 3-D
Longevity Efficiency Predicted COE	~10 ⁸ pulses ≥25% projected ~5¢/kWh	~10 ⁹ –10 ¹⁰ pulses ≥25% projected ~5¢/kWh	10 ¹⁰ pulses ≥25% projected ~5¢/kWh

^a At the beginning of the machine. Current increases with increasing kinetic energy.

Budget \$72M

The Phase 1 goals for KrF have been developed

Parameter	Current Status	Deliverables (Phase 1)	Power Plant
Laser bandwidth	3.0 THz	2.0 THz	1–2 THz
Single beam nonuniformity (high modes)	1%	1%	~1%
Overall efficiency	1.5%	6%	> 5%
Overall mean shots between maintenance	N/A	10 ⁵	~ 3×10 ⁸
Lens damage threshold	3 J/cm ²	10 J/cm ⁵	~ 10 J/cm⁵
Mirror damage threshold	3 J/cm²	15 J/cm⁵	~ 15 J/cm⁵
Amplifier aperture	60 cm	30 cm	100 cm

The Phase 1 goals for DPSSL have been developed

Parameter	Status	Phase 1	Power Plant
Overall system efficiency	No comparable system	10%	>5%
Diode efficiency	45% is routine	55%	55%
Diode cost	\$3.00/W _{peak}	\$0.50/W _{peak}	\$0.07/W _{peak}
System reliability	Mercury is first fusion DPSSL	> 10 ⁸ shots	> 10 ⁹ shots
Beam smoothness	7% (single beam)	0.1–1% on-target	0.1–1% on-target
Crystal size	3 cm	15 cm	15 cm
Frequency conversion to 3ω	80%	80% at 10 Hz with beam smoothing	80% at 10 Hz with beam smoothing

Budget \$43.5 M

Issue	Phase I Deliverable
Chamber clearing dynamics	 Demonstration of clearing with properly scaled liquid model experiment
Final focus/ chamber interface	 Magnet/chamber design with required shielding and focusing
Safety & environmental	 Minimize radioactive waste (shallow burial) Designs with <1 rem dose at site boundary
Target fabrication and injection	 Fabrication of prototype target components Demonstration of injection and tracking of warm targets Prediction of survival of cryo targets in hot chamber

- Numerous facilities would be employed (large and small scale)
- Budget \$31.5 M

During Phase I, the chamber S & T Program would address key IFE issues—Laser IFE

Issue	Phase I Deliverables		
First wall/ chamber lifetime	Assess: • Carbon and SiC first-wall life • Effectiveness of Xe gas protection • Erosion rates for granular solid coolants • Rapid first-wall change-out procedures		
Final optics survivability	Measure: Hot-fused silica neutron irradiation damage Grazing incidence metal mirror performance Shock effects 		
Safety & environmental	Determine: • T ₂ inventories in high-temp. carbon composites • Designs for <1 rem dose at site boundary • Activated dust transport		
Target fabrication and injection	 Fabrication of prototype target components Demonstration of injection & tracking of warm targets Prediction of survivability of cryo capsules 		

- Phase I deliverables
- DP funded activities
 - Target physics at Omega, Z, and NIKE
 - Fabrication of ignition targets
 - NIF project completion
 - Evaluation of utility/value of high yield targets for DOE (SSP and IFE) with pulse power and/or NIF

A national ignition plan has been developed to prepare for ignition on NIF

LLE'S Long-Range Program Plan

After the successful completion of "Phase I" IFE research, the program would be prepared to move forward

- Integrated Research Experiment
 - Demonstration of a full laser beamline
 - Integrated HIF experiment
- Develop and test high-pulse rate capable chamber and target systems
 - Injection and tracking capable of meeting IFE requirements
 - Protection of final optics and first wall
 - IRE may contribute to this area
- Development of mass production techniques for IFE targets
- Appropriate cost reduction activities to meet IRE and ETF goals

Concepts for an HIF IRE have been developed

Target chamber

Achievement of goals leads to ~10¹⁵ W/cm² at driver beam energy

Concepts for a KrF IRE have been developed

Concepts for a DPSSL IRE have been developed

- Demonstrate laser beamline
 - performance
 - lifetime
 - cost scalability
 - efficiency
- Demonstrate laser/target and laser/chamber interface
- Conduct chamber technology tests

Sponsorship of both DOE-DP and DOE-OFES is required to fully develop Inertial Fusion Energy

Bottoms-up Phase I IFE budget example

Costing, in \$K

Topic	FY1999	FY2000	FY2001	FY2002	FY2003
1. KrF Lasers	(DP) 7,500	20,000	19,200	13,300	13,000
Electra laser	5,900	9,700	11,400	6,000	6,000
KrF physics	700	1,650	1,650	1,750	1,400
Front end	500	1,850	1,850	1,250	800
Coatings	250	2,100	2,200	2,200	2,200
System studies	150	1,700	2,100	2,100	2,600
Laser-target designs	DP funded	DP funded	DP funded	DP funded	DP funded
Laser-target experiments	DP funded	DP funded	DP funded	DP funded	DP funded
Computer (for 3D Target		3,000			
Design)					
2. Solid State Lasers	(DP) 2,000	10,250	10,350	10,450	10,450
Efficiency	200	750	750	750	750
Diode cost	250	2700	2700	2700	2700
Beam smoothing/	150	1300	1400	1500	1500
physics impact					
Gain media	0	2250	2250	2250	2250
Frequency conversion	100	950	950	950	950
Wave-front correction	0	500	500	500	500
Technology integration	1,300	650	650	650	650
Scalability	0	1150	1150	1150	1150
Laser-target designs	DP funded	DP funded	DP funded	DP funded	DP funded
Laser-target experiments	DP funded	DP funded	DP funded	DP funded	DP funded
3. Heavy Ion	8,350	13,000	17,000	17,000	17,000
Accelerators					
Beam Experiments	1,970	2,600	3,800	2,200	1,400
Injector	1,300	2,800	3,650	2,150	2,000
Enabling Technologies	1,460	2,850	4,100	4,000	1,950
Theory and Simulations	3,070	3,250	3,450	3,650	3,650
RDAC and other pre-	0	500	1,000	4,000	7,000
construction					
Ion Target Design	550	1,000	1,000	1,000	1,000
4. Chamber Systems	1,585	7,200	7,400	7,800	7,800
Heavy Ion Chamber	752	1,800	1,800	1,800	1,800
Laser Chamber	497	1,800	1,800	1,800	1,800
Target fabrication	200	2,900	3,100	3,500	3,500
/injection					
Safety & Environment	136	700	700	700	700
TOTAL IFE	10,000	50,450	53,950	48,550	48,250
FUNDING (\$K)	(OFES)				

- Scientific and technical progress in ICF provides sufficient confidence now that IFE can be achieved
 - Risk/development cost are balanced
- The proposed OFES Program *effectively* leverages the DOE-DP Target Physics Program
 - DOE-DP has increasingly focused on target physics with reduced effort on science and technology relevant to IFE (drivers, chambers, innovative concepts)
- "Waiting for Ignition" will delay the development of IFE by a decade and prevent the capitalization of resources developed by DOE-DP
- Science and technology challenges and history give high confidence of continued benefit outside of main mission

Peer review (internal and external) and the entire fusion community working together are essential elements of the Program