Solitary Rarefaction Wave in Three-Dimensional Complex Plasma

R. Heidemanna, S. Zhdanova, R. Sütterlina, H. Thomasa and G. Morfilla

a Max-Planck-Institut für extraterrestrische Physik
Giessenbachstraße 85748 Garching

Abstract. Observation of a solitary rarefaction wave in a three dimensional complex plasma is presented. The experiments are performed in a capacitively coupled, symmetrically driven RF discharge. The discharge chamber is a modified version of the PK3plus setup installed on board the ISS. A gas temperature gradient of 400K/m is applied to compensate gravity and to levitate the particles in the bulk plasma. The particle cloud is formed by monodisperse MF particles with a diameter of 3.42±0.06 µm. The wave is exited by a short voltage pulse applied to the electrodes of the RF discharge chamber. We observed a pulse-like wave propagating with an average velocity of 1.14±0.02 cm/s. Particle dynamics is discussed in detail.

FIGURE 1. Profile of the solitary rarefaction wave in Neon at 24.1Pa

Keywords: solitary rarefaction wave, wave excitation

PACS: 52.27.Lw