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ABSTRACT

Global Mode Analysis of Centrifugal and Curvature Driven Interchange Modes

Benjamin Joseph Levitt

The first study of the global mode structures of interchange modes driven by both pres-

sure and centrifugal forces created in a laboratory magnetic dipole is presented. The mode

structures are determined using a correlation analysis of movable high-impedance floating

potential probes located at various positions within the plasma. These structures are repro-

duced by a fully self-consistent nonlinear particle simulation of interchange instabilities in

dipole geometry.

Hot electron interchange (HEI) instabilities are driven by a population of energetic, deeply

trapped particles with a steep outward pressure profile produced by electron cyclotron res-

onance (ECR) heating. The mode structures are determined primarily by low azimuthal

mode number and boundary conditions and are broad in radial extent.

The centrifugally-driven interchanges are excited by the creation of radial electric fields

which cause bulk azimuthal plasma E × B rotation. Electric fields are created using an

equatorial hot-filament bias control system which alters the plasma’s equilibrium electrostatic

potential by biasing inner flux tubes with respect to the outer chamber wall. The mode

structures for these instabilities are dominated by low azimuthal mode numbers and broad

radial structures. These measurements constitute the first experimental observation of the

centrifugal interchange instability.



Acknowledgments

I would like to thank my thesis adviser, Dr. Michael Mauel, for providing me with such a

fascinating and stimulating project as well as the skill necessary to tackle it. He has taught

and inspired me with his infectious enthusiasm and deep understanding. Dmitry Maslovsky

has also been a source of invaluable knowledge and insight into my research, and deserves

many thanks.

The Department of Applied Physics has provided a wonderful environment which has

been a home these past years. I will sorely miss it and hope to return to visit those that

made my stay here so special. In particular I would like to thank Marlene Arbo and Lydia

Argote for the friendly environment they create as well as the invaluable support structure,

both administrative and personal, they provide.

I also thank my father, Martin, and sisters Emily and Jennifer, for their endless support

and patience, and my dear friends for having faith all along the way. I dedicate this work

to my dear mother, Marilyn, may she rest in peace. I wish she were here to appreciate this

milestone in my life.

i



Contents

Acknowledgments i

1 Introduction 1

1.1 Experimental Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Dipole and Interchange Physics 6

2.1 Interchange Instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Interchange Instability in a Magnetic Dipole . . . . . . . . . . . . . . 10

2.2 Particle Motion in a Magnetic Dipole . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Adiabatic Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 HEI in Dipole Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Collisionless Terrella Experiment 20

3.1 CTX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Vacuum System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.2 ECRH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.3 Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Diagnostic Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Electrostatic probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Gridded particle analyzer . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.3 X-rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Installations to the CTX Device . . . . . . . . . . . . . . . . . . . . . . . . . 29

ii



3.3.1 Equatorial Tungsten Mesh Biasing Array . . . . . . . . . . . . . . . . 29

3.3.2 Polar Gridded Energy Analyzer Imaging Diagnostic . . . . . . . . . . 34

4 Curvature Driven Instabilities in CTX 36

4.1 Observation of HEI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Measurement of Global Mode Structure . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Mode Structure in the Heating Regime . . . . . . . . . . . . . . . . . 45

4.4 Modeling the Nonlinear Evolution of the HEI Instability . . . . . . . . . . . 45

4.4.1 Model Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.2 Global Mode Structure Comparison . . . . . . . . . . . . . . . . . . . 53

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Centrifugally Driven Instabilities in CTX 59

5.1 E×B Flows in CTX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.1 Plasma Response to External Bias . . . . . . . . . . . . . . . . . . . 59

5.2 Observation of Centrifugally Driven Interchange Instability . . . . . . . . . . 66

5.2.1 Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.2 Comparison with Nonlinear Simulation . . . . . . . . . . . . . . . . . 76

5.2.3 Summary of Experimental and Simulation Results . . . . . . . . . . . 78

5.3 Calculation of Radial Electric Field . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.1 Potential Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.2 Constant Current Calculation . . . . . . . . . . . . . . . . . . . . . . 85

5.4 Inclusion of Non-axisymmetric Effects . . . . . . . . . . . . . . . . . . . . . . 88

5.4.1 Results from Non-axisymmetric Terms . . . . . . . . . . . . . . . . . 92

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Interchange Instability Dispersion Relations 99

6.1 Rotational Mode - MHD Approach . . . . . . . . . . . . . . . . . . . . . . . 100

6.1.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1.2 Dispersion Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1.3 Instability Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

iii



6.2 Rotational Mode - Two Fluid Approach . . . . . . . . . . . . . . . . . . . . 102

6.2.1 Cold Electron Response . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2.2 Cold Ion Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2.3 Linear Dispersion Relation . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.4 Quasi-Neutrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.5 Poisson Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3 Hot Electron Interchange Dispersion Relation . . . . . . . . . . . . . . . . . 111

6.3.1 Hot Electron Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.2 Dispersion Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4 Combined Interchange Dispersion Relation . . . . . . . . . . . . . . . . . . . 115

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 Conclusions 117

iv



List of Figures

2.1 The gravitational Rayleigh-Taylor instability [Kelly (1989)]. . . . . . . . . . 7

2.2 The interchange instability drive mechanism. . . . . . . . . . . . . . . . . . . 8

2.3 Magnetic mirror configuration, which possesses bad curvature. . . . . . . . . 11

2.4 A schematic of a dipole confined plasma, specifically, a planetary magnetosphere. 12

2.5 Computed cold plasma edges in the equatorial plane, showing so-called fingers

of torus-driven plasma transport [Yang et al (1994)]. . . . . . . . . . . . . . 14

2.6 The ideal magnetic dipole, showing the three adiabatic particle motions. . . 16

3.1 The Collisionless Terrella Experiment . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Schematic of CTX. A general layout shows The vacuum vessel, magnetic topol-

ogy, microwave resonance location, diagnostics and new installations to the

device to be discussed in Sec. 3.3. . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 CTX dipole magnetic field, ideal (blue) and real (red). . . . . . . . . . . . . 25

3.4 Electrostatic probes used in CTX. A) Floating potential probe. B) Langmuir

probe, and C) Mach probe [Maslovsky (2003)]. . . . . . . . . . . . . . . . . . 26

3.5 Gridded particle analyzer [Maslovsky (2003)]. . . . . . . . . . . . . . . . . . 28

3.6 A schematic of the tungsten filament bias cap and gridded particle detector

array in relation to the terrella electromagnet and magnetic field lines (red)

and field strength (blue) of CTX. The locations of the particle detectors can

be seen, as well as the equatorial tungsten mesh assembly. . . . . . . . . . . 30

3.7 Photograph of the installations: (a) the tungsten meshes can be seen along

the circumference of the cap; (b) the polar imaging diagnostic array, and; (c)

the tungsten filament array in operation. . . . . . . . . . . . . . . . . . . . . 31

v



3.8 (a) Schematic of the biasing system of the tungsten mesh array and, (b) circuit

diagram of the filament pulser power supply. . . . . . . . . . . . . . . . . . . 33

3.9 Pictures of a tungsten mesh and the clamp assembly. . . . . . . . . . . . . . 34

3.10 Photograph of the tungsten filament array in operation. . . . . . . . . . . . . 35

4.1 Floating potential probe signals of the drift-resonant instability on different

time scales. (a) A long time scale shows an instability burst during heating

and a saturated mode during the afterglow. On a faster time scale, (b) and

(c), show the non-sinusoidal waveforms from two spatially-separated high-

impedance probes that illustrate the phase difference between probes. . . . . 38

4.2 Floating potential signal and TFD showing HEI instabilities during heating

and afterglow regimes [Maslovsky (2003)]. . . . . . . . . . . . . . . . . . . . 40

4.3 TFD of the magnitude of the correlation function of two floating potential

probes with ∆R = ∆s = 0 and ∆ϕ = 90◦ graphed with a linear grey-scale.

Shown below is the short-time frequency spectrum of the correlation at an

instant during fully-developed and saturated oscillations. The azimuthal mode

numbers are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 The field-line phase difference of the correlation function for two probes posi-

tioned at two locations along the same field line, ∆R = ∆ϕ = 0 and ∆s ≈ 35

cm, showing k‖ ≈ 0 for several modes during the afterglow. . . . . . . . . . . 44

4.5 The phase of the correlation between two probes as the radial separation

increased for the lowest three azimuthal modes. Results show kR ≈ 0 for all

modes during the afterglow. Solid lines are the relative phase difference of

global modes computed from the nonlinear simulation. . . . . . . . . . . . . 46

4.6 Comparison of radial mode structure of the normalized correlation amplitudes

for m = 1, 2, and 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.7 The normalized correlation amplitude for a m = 2 mode during three different

times in a shot, showing no significant time dependence to the profiles. . . . 47

4.8 The phase of the correlation between two probes as the radial separation

increased during the microwave heating for the lowest three m numbers. . . . 48

vi



4.9 Normalized correlation amplitudes for the lowest three m numbers during the

microwave heating compared with those during the afterglow. . . . . . . . . 49

4.10 Self-consistent time evolution of the electrostatic potential computed using

the nonlinear simulation. The TFD of the potential oscillations computed

by the simulation show multiple modes and frequencies rising in time that

resemble Figures 4.1 and 4.3. Time is normalized to ω−1
dh0, and the potential

is normalized to µ0B0/e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.11 Comparison of radial mode structure computed from the nonlinear simulation

(solid lines) with the observed profiles of the normalized correlation amplitudes

for m = 1, 2, and 3 as well as the solutions to Equation 4.13. . . . . . . . . . 57

5.1 An example of the effect of the external bias on various plasma parameters.

Black is without bias and red is with bias. . . . . . . . . . . . . . . . . . . . 60

5.2 Radial scan of the floating potential with and without the presence of the

external bias. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 (a) Interpolated floating potential from the red data points; (b) radial electric

field calculated from (a); (c) the azimuthal rotation velocity, and (d) the E×B

frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Normalized ion saturation radial profile between one movable Langmuir probe

and one stationary probe for the biased and unbiased case. The solid black

lines show the marginally stable profile from interchange linear theory, n ∝ r−4. 64

5.5 Soft x-ray measurements from inner, central and outer plasma regions, with

(grey) and without (black) the external bias. . . . . . . . . . . . . . . . . . . 65

5.6 Power provided by the bias power supply as a function of external bias for

different values of background neutral fill pressure. . . . . . . . . . . . . . . . 66

5.7 Effect of external bias on bulk plasma parameters and excitation of electro-

static fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.8 (a) The effect of a reduced B field on bulk plasma parameters and electrostatic

fluctuations: increased rotation speed and the excitation of an m = 2 mode

is observed. (b) The amplitude spectra of the fluctuations are dominated by

m = 1 in the slower regime, and (c) by a m = 2 in the faster regime. . . . . . 69

vii



5.9 m = 1 and 2 mode amplitude as a function of external bias. We call the

region where m = 1 dominates Region 1 and where m = 2 dominates Region 2. 70

5.10 m = 1 mode amplitude as a function of background neutral helium gas fill

pressure for two different external bias settings. . . . . . . . . . . . . . . . . 71

5.11 m = 1 mode frequency as a function of external bias for two different values

of magnetic field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.12 Simultaneous observation of HEI and rotational mode during a low density

shot. (a) The floating potential fluctuations and their TFD are shown from

one probe digitized at 200 kHz and, (b) another probe sampling at 1 MHz

picks up the characteristic HEI fluctuations. . . . . . . . . . . . . . . . . . . 72

5.13 a) Phase of the correlation function between two probes as a function of the

radial position of one probe for the three lowest m numbers. b) Radial phase

of the m = 1 mode at three different times during a shot. Solid line is the

simulation result for m = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.14 Normalized magnitude of the correlation function between two probes as a

function of the radial position of one probe for the three lowest m numbers.

Solid lines are simulation results. . . . . . . . . . . . . . . . . . . . . . . . . 77

5.15 (a)The ion density profile as a function of flux (ψ ∝ 1/r), for three different

times. A flattening of the initial profile is apparent. (b) Equatorial contour

plots of ion density. Time proceeds to the right. (c) Equatorial contour plots

of electrostatic potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.16 (a)The log of the mode amplitude for the four lowest m numbers for a hot

electron fraction of 5%, and (b) 20 %. . . . . . . . . . . . . . . . . . . . . . . 80

5.17 (a) The potential deduced from Equation 5.15 (in blue), (b) the resulting

electric field, (c) the azimuthal E × B velocity, and (d) the frequency of

rotation. The red dots are data points of floating potential, as shown in

Figure 5.2, and the black lines are the fit to these points along with the

electric field, flow velocity and rotation frequency calculated from this fit and

the CTX dipole field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.18 The real (reds) and imaginary (blues) solutions to Equation 5.23 for the elec-

trostatic potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

viii



5.19 Radial (red), azimuthal (blue) and axial (green) E × B velocities for m = 1

as a function of equatorial distance. . . . . . . . . . . . . . . . . . . . . . . . 93

5.20 Radial (reds), azimuthal (blued) and axial (greend) E×B velocities for m =

1, 2 and 3 as a function of equatorial distance. . . . . . . . . . . . . . . . . . 94

5.21 Radial (reds), azimuthal (blues) and axial (greens) E × B velocities as a

function of equatorial distance with and without Hall contributions. The

lighter shades correspond to those including the Hall terms. (a) m = 1; (b)

m = 2; and (c) m = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.22 Azimuthal component of the E × B flow, uϕ, for m = 1, 2 and 3. Darker

shades correspond to higher m numbers. . . . . . . . . . . . . . . . . . . . . 95

5.23 Vectorplot of radial and azimuthal flows in the equatorial plane for m = 1

and 2. (a) m = 1 without Hall terms; (b) m = 1 with Hall terms; (c) m = 2

without Hall terms; (d) m = 2 with Hall terms. . . . . . . . . . . . . . . . . 96

5.24 Vectorplot of radial and azimuthal flows in the equatorial plane for m = 3

with the Hall terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1 The growth rate of the rotationally driven interchange mode versus the rota-

tional drive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 a) HEI frequency, b) HEI growth rate, and c) HEI growth rate in low drive

regime, where low m modes are seen to be more unstable. . . . . . . . . . . . 114

6.3 The growth rate of the combined interchange mode versus the HEI drive,

for m = 1, 2, 4. m = 1 has the largest growth rate, but as Γh → 0 higher

modes become more unstable again. The solutions begin to break down in

this singular limit. The black line is just the HEI solution for m = 4 for the

sake of comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

ix



List of Tables

5.1 Key parameters used in the radial electric field calculation. . . . . . . . . . . 86

x



Chapter 1

Introduction

Interchange, or “fluting”, instabilities in magnetized plasmas are among the best known

in plasma physics. [39, 5, 6, 60] Interchange motion mixes plasma contained by magnetic

flux tubes while minimizing changes in the magnetic field. Instability results when this

mixing reduces the plasma’s potential or kinetic energy. This occurs for various reasons in

the laboratory, the ionosphere, and in planetary magnetospheres. In laboratory plasmas,

interchange instabilities are possible when the pressure gradient has components parallel

to the magnetic curvature. Experiments have shown them to be stabilized by reversing

the direction of curvature,[28, 24] by creating “average good curvature” either on toroidal

flux surfaces[18] or on the plasma-vacuum boundary,[16] and by creating local regions with

average magnetic shear.[35] In the ionosphere, gravity drives interchange instability, and

its nonlinear evolution plays an essential role in the intense wave dynamics of the night-

time equatorial F-region.[30] Interchange motion of plasma confined by the dipole-like field

of planetary magnetospheres can be driven or “spontaneous” (i.e. unstable), and both

have been extensively studied theoretically.[20, 62, 63] Because the magnetic field strength

of a dipole decreases rapidly with radius, B ∼ R−3, interchange motion in a dipole is

associated with significant plasma compression. Pressure gradients can drive interchange

instability in a dipole only when the equatorial plasma pressure profile varies more rapidly

than p ∼ R−4γ (where γ ≈ 5/3 is the appropriate magnetohydrodynamic (MHD) ratio of

specific heat). Observations show the Earth’s magnetosphere to be interchange stable, but

steady plasma circulation and impulsive radial-diffusion[12] results from electric fields created

1



CHAPTER 1. INTRODUCTION 2

by the solar wind, and these can be considered examples of driven interchange motion. In

Jupiter’s magnetosphere, interchange instability is influenced by pressure gradients and by

centrifugal forces caused by co-rotation.[61] Recently, the Galileo spacecraft measured a

buoyant, inward-moving flux tube within Jupiter’s Io plasma torus and also fluctuations

in the bulk ion flow and density that provide evidence for unstable interchange motion of

dipole-confined plasma in space.[65, 33, 17]

Although interchange instability is an important process for magnetized plasma, mea-

surement of its global structure has been possible in only a few cases. Probably, the most

detailed images of interchange instability have been made from radio-wave scattering from

the F-layer of the ionosphere. (See Kelly’s monograph.[30]) These spectacular images show

towering “plumes” created by rising interchange “bubbles”. Nonlinear simulation of the

gravitational interchange has reproduced this plume structure.[74] Laboratory observations

of the nonlinear structures of interchange instability have also been made using toroidal de-

vices that have regions without magnetic shear. The electrostatic potential has been mapped

using movable floating potential probes in a toroidal octupole[35, 49] and in current-free

discharges created in a purely toroidal magnetic field.[52, 54] These electrostatic potential

structures sometimes form closed equipotential contours that appear as slowly propagating

and coherent E × B vortices, or “convective cells”. They decay by viscous forces if not

continuously driven. For plasma formed within a purely toroidal magnetic field, the electro-

static potential evolves into a highly nonlinear state dominated by a rotating dipole vortex

superimposed on equilibrium poloidal flows that have been reproduced by self-consistent,

nonlinear simulation.[58]

When interchange instabilities are excited by magnetically-trapped energetic electrons,

the modes have a real frequency proportional to the fast ∇B drift of the hot electrons, ωd.

When the rotation frequency is less than the ion-cyclotron frequency, the instability is called

the low-frequency hot electron interchange (HEI) instability.[34] Higher frequency modes

have been described by Berk,[3] and both the low-frequency and high-frequency hot electron

interchange mode have been identified experimentally.[2, 25, 37] Hot electron plasmas can

remain stable even when pressure gradients exceed the usual MHD condition for flute insta-

bility because the real frequency of the mode generates stabilizing ion polarization currents.

Although the global mode structure was not measured directly in these previous studies,
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Spong and co-workers[64] showed that when realistic profiles are used during computation of

the linear, radial eigenmode, then the predicted onset for instability was consistent with ex-

perimental observations. The first global mode structure measurements of the low frequency

HEI instability were presented by Levitt et al [36] and are described in more detail in this

thesis.

As mentioned, interchanges may also be driven by centrifugal forces. The possibility of

centrifugally driven plasma convection has been studied in the Io plasma torus of Jupiter.

With an 11 hour day and a largely co-rotating high β magnetosphere, rapid Jovian rotation

produces an outwardly directed effective gravity. As described by Siscoe and co-workers [61],

the outer edge of the Io plasma torus is likely unstable to rotationally-driven interchange

instabilities. During the Galileo spacecraft’s encounter with Io in December 1995, several

wave phenomena were observed by the magnetometer instrument [32, 57]. Measurements of

the radial profile of phase space density of energetic S+ ions in the torus found an anomalous

enhancement of phase space density at an inner location (L = 6.03) that corresponded to

values native to the outer torus (L ≈ 6.3) [46]. This has been interpreted as an inward moving

plasma “bubble” caused by rotationally driven interchange motion. However, rotationally

driven interchanges have not been observed experimentally to date. Such observations are

also included in this thesis, along with the measured mode structures of the rotational

instabilities and a comparison to the same non-linear simulation mentioned previously. Thus,

this thesis constitutes observations and global descriptions of interchange modes driven by

both pressure and centrifugal forces.

1.1 Experimental Observations

Within this thesis are presented the first measurements of the mode structure of the elec-

trostatic, low-frequency interchange instability driven by energetic electrons trapped in an

axisymmetric dipole magnetic field. The modes rotate rapidly in the drift direction of the

trapped electrons, and they have a complex and time-varying frequency spectrum. Sev-

eral modes co-exist. Experimentally, these modes are distinguished from each other using

frequency-domain correlation between several movable probes and a fixed reference probe.

The measurements show the flute-modes have a radial structure that depends only on the
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azimuthal mode number, m, extends across the entire dipole-confined plasma, and does not

evolve in time with the frequency. In this article, we also compare these measurements to

a fully self-consistent, nonlinear simulation that has been described elsewhere.[44] This sim-

ulation reproduces both the large-amplitude mode structure of the interchange modes and

their complex, time-varying frequency spectra.

We also present for the first time the observation of the rotationally driven interchange

mode. Plasma is rotated to near sonic flows by imposing an external radial electric field with

a tungsten electrode array, which causes an azimuthal E × B bulk plasma rotation. The

resulting centrifugal force on the massive ions results in charge separation and instability

drive. The observed instabilities are coherent modes with global radial mode structure

and low azimuthal mode numbers. The frequency of the m = 1 mode in the lab frame is

approximately 25 kHz, roughly equal to the E × B frequency of the plasma plus a smaller

contribution from the drift resonant hot electrons. The ion density profile is seen to flatten in

the presence of the instability. Results from the self-consistent non-linear particle simulation

are compared to observations and reproduce key characteristics including the global mode

structure from the experimental results.

1.2 Numerical Simulations

Observations of both the HEI and rotational interchange instability are compared to a self-

consistent non-linear numerical simulation. Originally written to study the growth and satu-

ration of the HEI mode, it reproduces both the global mode structure [36] and the frequency

sweeping and phase-space structure formation of the HEI instability observed experimentally

[42]. The radial and azimuthal mode structure is reproduced upon appropriate adjustment

of the boundary conditions.

The same code produces the rotational mode by adjusting the hot electron and ion profiles

and introducing rigid rotation due to either or both of gravitational and centrifugal forces.

Short wavelength damping must also be adjusted for good agreement. Typically, the hot

electron fraction is reduced from the HEI runs, while the ion profile is steepened, which, in

combination with rotation, produces dramatic ion mixing. As with the HEI investigations,

experimental mode structures are reproduced through adjustment of boundary conditions.
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1.3 Organization

This thesis is organized according to the following manner. In Chapter 2 we introduce the

basic physical concepts of dipole geometry and interchange instabilities. The Collisionless

Terrella Experiment (CTX) and its diagnostics are described in Chapter 3. Chapter 4 covers

the pressure driven HEI instabilities and the global mode structure analysis performed with

a multi-probe cross-correlation method. These results are also compared to results from the

non-linear particle simulation. Experimental excitation and observation of the rotationally

driven interchange mode using the external bias array is described in Chapter 5. Here,

we also give the results of the same global mode structure performed on the HEI mode

for these rotational instabilities. Again, results are compared to simulation. In Chapter 6,

the interchange instability dispersion relation driven by both pressure and centrifugal forces

is derived using a non-linear two-fluid analysis in dipole flux co-ordinates. The resulting

dispersion relation is used to interpret the experimental observations of the rotational mode.

A summary of results is given in Chapter 7.

All mathematical formulas are presented in Gaussian (cgs) units, unless noted otherwise.



Chapter 2

Dipole and Interchange Physics

In this chapter we discuss the basic concepts of interchange instabilities, starting with the

well-known Rayleigh-Taylor instability, and progressing to fluid interchanges driven by var-

ious forces, such as gravity, centrifugal, magnetic gradient and curvature forces as well as

finite-temperature kinetic instabilities, such as the Hot Electron Interchange (HEI) instabil-

ity, observed in the CTX device.

In addition, some basic concepts of plasma confinement in a magnetic dipole will be

introduced, including adiabatic invariants and dipole flux co-ordinates, which will be used

frequently throughout.

2.1 Interchange Instabilities

Interchange instabilities are probably the simplest and most important type of plasma in-

stability. The well-known hydrodynamic version of an interchange is the Rayleigh-Taylor

instability, in which a heavy fluid is supported against gravity by a light fluid. This equi-

librium is unstable to small perturbations, so that the interface between the fluids becomes

rippled, and the two fluids begin to mix (or interchange) and the heavy fluid falls through the

light fluid. Figure 2.1 shows sequential sketches from photos of the hydrodynamic Rayleigh-

Taylor instability [30]. The plasma analog of this situation is a plasma supported against

gravity by a vacuum magnetic field. The planar, or slab, geometry of this unstable equi-

librium is shown in Figure 2.2. We’ve introduced the situation using gravity, but we can

6
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Figure 2.1: The gravitational Rayleigh-Taylor instability [Kelly (1989)].

substitute in the ∇B force as well. Gravity is rarely of much importance in laboratory

plasmas, so the real importance of the Rayleigh-Taylor instability is the close analogy it

bears with the magnetic gradient and curvature forces that come into play when plasmas

are confined by curved magnetic fields.

The figure shows a plasma supported against a downward force by a magnetic field out

of the page. A perturbation at the surface causes charge separation via the plasma drifts

which correspond to whichever force is at play. For a given force the plasma drift is, from

the Lorentz force equation,

u =
1

q

F×B

B2
, (2.1)

so that the gravitational drift is

ug =
m

q

g ×B

B2
, (2.2)

and the ∇B drift, whose force is F∇B = −µ∇B = −(mv2
⊥/2B)∇B, where µ is the magnetic

moment of a particle of mass m and charge q, is

u∇B =
µ

q

B×∇B

B2
. (2.3)
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Figure 2.2: The interchange instability drive mechanism.

We note that both drifts are charge dependent, so that ions and electrons drift in opposite

directions, creating charge separation and buildup on the plasma boundary, and electric

fields which can drive instabilities. The gravitational drift is also mass dependent, so that

electrons have a negligible drift compared to ions. The ∇B drift, on the other hand, is

independent of mass for a fixed energy, though electrons usually have higher energy due to

their lesser inertia.

The ensuing drifts and electric fields are shown in Figure 2.2. The resulting fields, the

E1’s, end up in the same direction for both forces, which cause a secondary drift from the

electric force, the E×B drift,

ue =
E×B

B2
, (2.4)

which is in the same direction as the original perturbation, thereby providing positive feed-

back for unstable motion.

A simple global normal mode analysis - which we will perform in full detail in dipole flux

co-ordinates in Chapter 6 - results in the following slab geometry growth rate for the most
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unstable interchange modes,

γ = (g/s)1/2, (2.5)

where s is the plasma density scale length. Thus, the steeper the gradient in density, the

faster interchange motion sets in to flatten the gradient. The stability condition in the slab

geometry is simply

g · ∇ρ > 0, (2.6)

where ρ is plasma density. That is, a density gradient opposing gravity results in instability.

Interchanges due to Field Curvature For the case of curved magnetic fields, we can

borrow the results from the gravity case by making a few substitutions. Particles, in general,

travel along field lines, so in a curved magnetic field, particles will experience a centrifugal

force. If the radius of curvature of the field is Rc, the centrifugal force on the particle is,

Fcf =
mv2

‖

Rc

r̂, (2.7)

where v‖ is the velocity along the field-line, with the resulting curvature drift given by

ucurv =
mv2

‖

qB2

Rc ×B

B2
. (2.8)

It is often helpful to combine the magnetic curvature and gradient drifts into a single ex-

pression, since a realistic magnetic field is characterized by both these attributes. For a

zero-curl magnetic field - which is a field with no volume currents, a so-called vacuum field

- the combined drift has a simple form [21]:

uB =
m

q
(v2
‖ + v2

⊥/2)
Rc ×B

R2
cB

2
. (2.9)

Comparing this expression with the gravitational drift, Equation 2.2, shows that, pro-

vided gravity and the radius of curvature are aligned, we can adopt results from the grav-

itational case by substituting the appropriate expression for g. We average the velocities

in Equation 2.9 over a thermal distribution and relate them to the temperature, and hence

to the pressure and density. The proper substitution is g = 2p/ρRc. The comparable slab

geometry stability criterion for pressure driven interchanges becomes

Rc · ∇p > 0. (2.10)
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Thus instability arises when a plasma is confined by a curved magnetic field which is concave

toward the plasma. In the fusion community this is often referred to as “bad curvature”,

and it has profound influences on design and operation of various fusion confinement devices.

Figure 2.3, for instance, shows a plasma configuration commonly referred to as a “magnetic

mirror”, which possesses bad curvature. The magnetic field is axial, produced by the blue

current-carrying coils, and increases in magnitude at either end of the mirror so as to axially

confine the plasma. This configuration has an outwardly directed radius of curvature at the

ends, where the field increases. The plasma is peaked on axis, and therefore has an inwardly

directed pressure gradient. Thus, by the arguments we have just lain out, the configuration

becomes unstable. Ripples at its surface grow larger in time.

The ripples are constant along field-lines because interchange motions do not bend mag-

netic field-lines. They do not, in general, alter magnetic field energy density, in contrast

with other types of plasma instabilities seen in toroidal magnetic traps. Instead they release

thermal energy from adiabatic expansion of plasmas across magnetic fields. If we consider

the linear wave properties of interchange fluctuations it is true that

k ·B = 0, (2.11)

or k‖ = 0, where k is the wave-vector of the instability. These instabilities are also called

“flute” instabilities.

2.1.1 Interchange Instability in a Magnetic Dipole

Gravity and Rotation Driven Interchanges

Magnetic dipoles are another configuration that confine plasma with bad magnetic curvature.

Dipole confined plasmas are found naturally in planetary magnetospheres, accretion disks

and many other astrophysical environments. An important aspect of the dipole magnetic field

is that the rapid radial variation of its field strength (1/r3) leads to strong compressibility

effects for the interchange mode [5, 31]. Strong pressure and density gradients may still be

stable provided these gradients do not exceed thresholds set by the compressibility criterion.

Long-lived equilibria exist such as Earth’s radiation belts or Jupiter’s Io torus. Such a

configuration is depicted in Figure 2.4



CHAPTER 2. DIPOLE AND INTERCHANGE PHYSICS 11

P
D

Rc

B

I

Figure 2.3: Magnetic mirror configuration, which possesses bad curvature.

Dipole magnetic field-lines are shown, as well as two flux tubes containing plasma, one

at r1 and one at r2. A high pressure, deeply confined torus is also shown. The planet, as

well as the magnetic field, spins at angular frequency Ω, and - in the so-called frozen-in

field condition - so is the plasma. This condition of plasma spinning at the same angular

frequency as the planetary magnetic field is called co-rotation, and is not always strictly true.

In Earth’s magnetosphere, for instance, co-rotation extends out to the plasmapause, beyond

which the plasma flow circulation is driven by the solar-wind. In the Jovian magnetosphere

the radius within which the plasma co-rotates with the planet extends much further due to

its very strong magnetic field and the relatively weaker solar-wind flows.

The rotation of the plasma causes an outwardly directed centrifugal force on the plasma,

given by,

Fcf = −ρΩ× (Ω× r). (2.12)

It is common practice to incorporate this force into an effective gravity, geff = g−Ω×(Ω×r),

in the plasma frame of reference. Such a substitution leaves the general equations used to

derive the growth rates and stability criterion for the gravitational interchange instability
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Figure 2.4: A schematic of a dipole confined plasma, specifically, a planetary magnetosphere.
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unchanged, and therefore it is clear that centrifugal forces as well may cause interchange

instabilities in rapidly rotating plasmas.

Since gravity goes as r−2 and the centrifugal force goes as r, close to the planet gravity

may be dominant, while further out the centrifugal force becomes stronger [62]. For example,

in Figure 2.4, close to the planet where the density gradient is outward, there is a region

which is unstable to gravitationally driven interchanges. On the other hand, further out,

where the density gradient is inward and where the centrifugal term dominates geff , the

plasma supports centrifugally driven interchange motion. That is, in the former region

geff∂ρ/∂ψ < 0 is true, while in the latter geff∂ρ/∂ψ > 0 holds, where ψ is the magnetic

flux and is inversely proportional to radius. Dipole flux co-ordinates will be discussed in the

next section.

Observation of the gravitational mode occurs regularly, primarily in the evening, in the

F-layer of the ionosphere [30]. Plume-like structures, or bubbles of upwelling plasma are

interpreted as resulting from a convective instability driven by gravitational forces. These

instabilities are called Equatorial Spread F (ESF). Little evidence exists, on the other hand,

regarding observation of the centrifugally driven mode. As mentioned in Chapter 1, the

possibility of centrifugally driven plasma convection has been studied in the Io plasma torus

of Jupiter. In addition to the 1995 Galileo observations, much theoretical and numerical work

has also been devoted to this problem (see [13, 14, 15, 38, 63, 62, 55, 7, 56, 50, 6, 20] for a

history of the subject all the way back to Gold, who first proposed the possible existence of

this class of motions in the Earth’s magnetosphere). One example of a numerical simulation

of torus-driven plasma transport is shown in Figure 2.5 [73]. Further observation of this

phenomenon may come with the upcoming Cassini encounter with Saturn. However, none

of these suggestive measurements have been supported by direct experimental observation of

the centrifugal mode. The experiments that are described in this thesis constitute the first

direct evidence of this instability.

Pressure Driven Interchanges

If a dipole confined plasma has a thermal component, the plasma pressure will be nonzero,

and will thus introduce the possibility of becoming unstable to flute instabilities, ie., having
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Figure 2.5: Computed cold plasma edges in the equatorial plane, showing so-called fingers

of torus-driven plasma transport [Yang et al (1994)].

bad curvature. Returning to Figure 2.4, the pressure gradients associated with the thermal

plasma torus are shown and indicate the stability regions that result: since the radius of

curvature is outwardly directed, the plasma is stable to interchanges on the inside of the

torus, while being unstable on the outside. This is the same region which is unstable to

centrifugally driven modes. Thus interchanges driven by a combination of centrifugal and

pressures drives are possible. A local nonlinear stability analysis of these modes is described

in Chapter 6.

When we speak of interchange motion it is convenient to describe the motion of two flux

tubes of plasma, as in Figure 2.4, which contain equal magnetic flux, Φ = A ·B, where A is

simply the area of the given flux tube, and B is the field at the location. If such were not

the case, then the magnetic topology would necessarily be changed, which usually causes an

increase in the total magnetic field energy. Other classes of motions called quasi-interchanges

allow for small nonzero k‖ and may be important in magnetospheres [13, 14, 15, 50] From this

condition one can derive via a simple argument first given by Gold [20] what the marginally

stable pressure profile is to interchanges. Given that the dipole field goes as r−3, the constant

flux condition for two flux tubes, 1 and 2, is A1r
3
1 = A2r

3
2. The area of an outward moving

flux-tube, call it flux-tube 1, increases by (r2/r1)
3, while the volume increases by (r2/r1)

4,

since the length of the flux-tube is proportional to r. For adiabatic expansion, we have

pV 5/3 = constant. Since V ∝ r4, we have pr20/3 = constant. And so, the pressure profile
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that corresponds to this adiabatic motion in a magnetic dipole is p ∝ r−20/3. Any profile less

steep than this is supportable by the magnetic field in spite of the bad curvature. Instabilities,

then, can be controlled if one has control of the pressure profile.

Such pressure driven instabilities are commonly seen in experimental situations and have

been the subject of research on the CTX device [72, 68, 69, 70, 44, 42, 36, 45, 41, 40].

Hot Electron Interchange Instability

The particular type of flute instability observed in the Collisionless Terrella Experiment is

called the Hot Electron Interchange (HEI) Instability, first descibed by Krall [34]. It is

distinct from a standard MHD flute instability in that the instability is driven entirely by

electron pressure with cold neutralizing ions. Additionally, since the hot electrons have a

distribution of energy there is a drift resonant interaction between the energetic particles

that comprise the non-Maxwellian part of the distribution function and the azimuthally

propagating instability that exists within the plasma. This instability is analogous to the

so-called bump on tail instability. Physically speaking, when the wave and the particle

have roughly equal velocities, ω ∼ kv (where ω is the frequency of the wave, k is the wave

number and v is the particle thermal velocity), resonant wave-particle interactions lead to

energy exchange with the waves electrostatic potential. If the particle distribution, F , is

characterized by more fast particles than slow ones near v ∼ ω/k, then ∂F/∂v|v=ω/k > 0

will be true, and the wave will take energy from the particle, resulting in wave growth and

instability. If there are more slow particles, on the other hand, ∂F/∂v|v=ω/k < 0, and the

wave will damp, giving its energy to the particles.

In CTX, a non-Maxwellian plasma exists since ECR heating is used for plasma produc-

tion. Thus a deeply trapped energetic population is created which becomes unstable to HEI,

when the pressure gradient exceeds the interchange criterion, ∂ρ/∂ψ > 0. We will return to

the topic of HEI in dipole geometry after discussing some basic dipole physics.
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Figure 2.6: The ideal magnetic dipole, showing the three adiabatic particle motions.

2.2 Particle Motion in a Magnetic Dipole

A curl-free, axisymmetric ideal dipole magnetic field, Figure 2.6, is represented in magnetic

(or Clebsch) coordinates as B = ∇ϕ×∇ψ = ∇χ, where ϕ is the azimuthal angle of symmetry,

ψ is the magnetic flux and χ is the magnetic scalar potential. The latter two quantities can

be written in spherical coordinates as,

ψ = M
sin2 θ

r
, (2.13)

χ = M · ∇1

r
= M

cos θ

r2
, (2.14)

where r and θ are spherical co-ordinates, and M = B0L
3
0ẑ is the characteristic dipole moment.

Field-lines are defined by (ψ, ϕ) while χ parametrizes the distance along a field line. It is

often convenient to look at quantities only in the equatorial plane, since energetic particles

will be deeply trapped in a high field dipole. The equatorial (θ = π/2) radius is referred to

as L [47], so that M is defined in terms of the field strength at a reference radius, L0.

The magnitude of the dipole field has the familiar form:
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B(r, θ) =
M

r3

√
(1 + 3 cos2 θ). (2.15)

2.2.1 Adiabatic Invariants

Charged particles in a dipole magnetic field have three nearly periodic motions, called adia-

batic motions, which can be described by an action-angle description. The actions are called

the adiabatic invariants and the angles are simply the frequency of the motion. The three

motions are depicted in Figure 2.6 and are briefly explained here.

Cyclotron motion around magnetic field-lines is characterized by the cyclotron frequency

ωc = qB/m and the magnetic moment, or first adiabatic invariant, µ defined as

µ ≡ mv2
⊥

2B
, (2.16)

where m is the mass of the particle, q is the electron charge and v⊥ is the velocity perpen-

dicular to the magnetic field vector. The higher the energy of the particle, the larger µ is,

the faster ωc is and the smaller the orbit, given by ρL ≡ v⊥/ωc, called the Larmor radius

or gyro-radius. Provided no external perturbations are present that have ω ∼ ωc, the first

adiabatic invariant of a particle is conserved during its motion.

The second adiabatic motion of charged particles in magnetic dipoles is the bounce mo-

tion, which requires that the first adiabatic invariant be constant in the following way.

Particles are confined from moving across field lines by the cyclotron motion, yet they are

able to move along these field-lines. As a particle follows a field-line into a region of stronger

magnetic field (eg. moving toward the poles from the equator), v⊥ increases to conserve µ

at the expense of the parallel energy E‖ = mv2
‖/2. Ultimately, a point where E‖ = 0 can be

reached where all the particle energy is perpendicular energy. A restoring force called the

Grad-B force, F∇B = −µ∇B, causes the particle to reflect back along the field-line. This

sets up a periodic motion of the particle between high field ends of a field-line. This is the

bounce motion, which is the mechanism for plasma confinement in a dipole. The bounce

motion is characterized by the second adiabatic invariant J , defined as

J ≡
∮
mv‖ds, (2.17)
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where s is the distance along the field line and is related to the magnetic potential through

ds = dχ/B. For completeness we include the the frequency of the bounce motion, ωb,

ωb =
2π

TB
= 2π

(∫ ds

v‖

)−1

, (2.18)

where TB is the period of the bounce motion.

Note that particles with little perpendicular energy can escape the dipole field. Con-

versely, particles with large perpendicular energy are deeply trapped and bounce very near

to the equatorial plane. These particles have J ≈ 0. Again, this motion is conserved if no

perturbations on the order of ωB are present.

The final adiabatic motion is the drift motion. This results from the particle drift caused

by the previously mentioned Grad B force. From Lorentz’s equation, any force perpendicular

to B will cause a particle velocity in the direction normal to both the new force and B. In

this case, we have,

ud =
F×B

qB2
=
µ

q

∇B ×B

B2
. (2.19)

This drift is in the azimuthal direction, and causes positively and negatively charged particles

to drift in opposite directions due to the q dependence, creating a current. The third adiabatic

invariant, or action, that characterizes the drift motion around the dipole can be defined

as [53]

ψ =
∮
mE⊥dϕ (2.20)

where E⊥ = µB is the perpendicular energy, and ϕ is the azimuthal angle. This is also equal

to the magnetic flux enclosed by the particle’s precessional orbit, hence the label ψ.

In strongly-magnetized plasmas the three characteristic frequencies have very different

time scales [51]. In CTX ρL/L � 1 and so ωc � ωb � ωd and the corresponding actions,

the magnetic moment, µ, the longitudinal adiabatic invariant, J , and the magnetic flux, ψ,

are approximately constant.
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2.2.2 HEI in Dipole Geometry

If the condition that the adiabatic motions be conserved is relaxed, instability and stochastic

particle transport across the magnetic field lines can result. As mentioned, this requires a

force that changes on a time-scale comparable to the periodicity of the given adiabatic motion

[59, 1, 48]. When non-axisymmetric fluctuations of geomagnetic or electric fields resonate

with the precessional drift of the particles, ω ∼ mωd, where m is an interger, the time

variation of the third adiabatic invariant ψ can become chaotic. This can lead to plasma

instability.

In the Collisionless Terrella Experiment, electrostatic fluctuations are observed on the

time scale of ωd. These are drift-resonant fluctuations which break the conservation of

ψ. Outward radial transport is observed which is the interchanging of inner flux tubes of

dense plasma with less dense plasma contained by outer flux tubes. These pressure driven

interchanges occur when the hot electron pressure gradient exceeds the critical profile. The

population of energetic electrons are rapidly ∇B drifting at ωd ∼ 1 MHz, which gives the

instability a real frequency ω ≤ ωd/2 in addition to the purely unstable growth (discussed

in Sec. 6.3).

Since these low-frequency interchange fluctuations break only the third adiabatic in-

variant, ψ, through resonant interaction with the rotating potential structures, µ and J

remain constant even when the radial transport is chaotic [72]. In our simulations, invari-

ance of (µ, J) serves as the “equation of state” for modeling adiabatic, collisionless heating

or cooling during the radial flute motion of the energetic electrons induced by electrostatic

fluctuations in a dipole.

This simulation will be employed in global mode structure comparisons of both the HEI

instability in Chapter 4 and the centrifugally driven instability in Chapter 5.



Chapter 3

Collisionless Terrella Experiment

Measurements reported in this work were made using the Collisionless Terrella Experiment

(CTX) located in Columbia’s Plasma Physics Laboratory. The design goal of CTX is to

study fundamental dynamical processes of plasmas confined by the field of the magnetic

dipole. When an “artificial radiation belt” of energetic electrons is created with electron

cyclotron resonant heating (ECRH), a variety of drift-resonant waves and fluctuations leading

to stochastic radial particle transport and nonlinear frequency sweeping are observed. In

addition, radial electric fields can be induced in the CTX device which cause E×B rotation

and the study of rotationally induced instabilities. This chapter describes the specifics of the

CTX device as well as the tools and diagnostics used to study and control plasma instabilities

under investigation.

3.1 CTX

3.1.1 Vacuum System

In CTX, a dipole electromagnet is suspended mechanically inside an aluminum vacuum

vessel 2 cm thick and 140 cm in diameter. Figure 3.1 shows the photograph and general

layout of the CTX device. Figure 3.2 displays the schematic diagram of the internal dipole

electromagnet assembly, various diagnostics as well as the magnetic field topology. A stainless

steel enclosure electrically grounded to the vacuum chamber surrounds the magnet and

20
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Figure 3.1: The Collisionless Terrella Experiment
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houses the electrical and cooling leads.

An ultrahigh vacuum with an operating pressure of p ∼ 2× 10−7 Torr is created using a

combination of pumps: a turbomolecular pump with the pumping speed of 1500 liters/sec

is then used to lower the vacuum pressure below 10−6 torr; and finally a cryopump with

the pumping speed of 2000 liters/sec is used to reach the operating vacuum pressure of

p ∼ 2 × 10−7 torr. Due to relatively low density of the plasmas created in CTX, the

cryopump can operate anywhere between 3− 6 months without the need for a regeneration

procedure depending on the plasma density regime studied and the rate of shots taken.

Ionization gauges are used to monitor the pressure within the vacuum vessel.

During operation, hydrogen gas is puffed into the vacuum vessel through a high-voltage

fast-switching piezo-electric valve. Depending on the length and number of gas puffs, different

plasma density regimes can be achieved. Typically, single 3−5 µsec gas puff is used to create

plasmas with a particle density of about n ' 109 − 1010 cm−3.

3.1.2 ECRH

Electron cyclotron resonance heating (ECRH) is used to create and heat the plasma and to

control the dynamics of the observed instabilities.

A continuous high-power wave magnetron with peak output of 1.6 kW of power at

2.45 GHz, is employed to ionize hydrogen gas. The microwaves propagate along a wave

guide which connects the magnetron with the vacuum vessel and are plane polarized before

being launched into the plasma above one of the polar regions. The vacuum chamber acts

as an effective microwave cavity; waves make many passes through the plasma until they

are finally absorbed by resonant electrons. A directional coupler in the wave guide measures

forward and reflected microwave power.

The resulting plasma consists of a cold background plasma as well as an “artificial ra-

diation belt” of energetic electrons with energies in the range of 1 − 60 keV. Three sub-

populations of electrons are distinguished: hot electrons with energies above 20 keV, warm

electrons with energies between 1 and 20 keV, and cold electrons with energies below 1 keV.

The dipole field has the strength of 15 kG at the face of the magnet and falls off to ap-

proximately 50 G at the wall of the vacuum chamber. Because the cyclotron frequency is
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Figure 3.2: Schematic of CTX. A general layout shows The vacuum vessel, magnetic topology,

microwave resonance location, diagnostics and new installations to the device to be discussed

in Sec. 3.3.
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directly proportional to the strength of the local magnetic field, ωce = qB/cme, the fun-

damental microwave resonance, ωce = ωECRH , is defined by B0 ≡ 875 G. This essentially

defines a spherical surface, which intersects all field-lines that cross the equator with radii

L ≥ L0 ≡ 27 cm. Since the rate of heating is proportional to the amount of time an elec-

tron is resonant with the wave, ECR heating is the strongest for deeply trapped particles

(µB � Jωb) mirroring at the equatorial location of L0 = 27 cm.

The cutoff density for propagation of electromagnetic waves in plasma is determined by

the plasma frequency, ω2
pe = 4πe2n/me. Thus, for the heating microwaves to be absorbed by

the plasma, the CTX density must be below n < 7 x 1010 cm−3.

3.1.3 Magnetic Field

As can be seen in Figure 3.2, several of the probes are not located within the equatorial

plane of the dipole field. Often, however, it is desired to plot probe data as a function of

the equatorial location the probe tip maps to along field lines. This can be done easily with

knowledge of the magnetic field. The CTX field is produced by a current winding pack

(12x14) housed inside the terrella. The latter is easily computed using a standard Green’s

function for the poloidal flux,

Ψ(x, z) =
∑
i

IiG(x, z, xi, zi), G = µo

√
xxc
k2

[
(2− k2)K(k2 − 2E(k2)

]
,

k2 =
4xxc

((x+ xc)2 + (z − zc)2)
,

where x and z are cartesian coordinates, xi and zi are the radius and height of the coils, and

E(k2) and K(k2) are elliptic functions.

To map an arbitrary probe location back to the equatorial plane one calculates the flux at

the given probe location and solves for the equatorial location that produces the same value

of the flux. The calculated field is shown in Figure 3.3 (red), along with the field calculated

assuming an ideal dipole (blue), showing, in fact, how useful the ideal dipole approximation

is, warranting its use in many of the calculations discussed here.
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Figure 3.3: CTX dipole magnetic field, ideal (blue) and real (red).

3.2 Diagnostic Equipment

Relatively low plasma densities in CTX enable the use of intrusive diagnostics, such as

Langmuir probes. The probes can be repositioned radially within the vacuum vessel to

examine plasma properties at different field lines. Only when the diagnostics are placed

within a few centimeters of the center of the energetic electron ring (L0 = 27 cm), do they

begin to perturb the plasma appreciably.

3.2.1 Electrostatic probes

A series of Langmuir and floating potential probes are situated throughout the CTX vacuum

vessel (see Figs. 3.1 and 3.2) are used to measure plasma fluctuations and ion flow.

Langmuir Probe The CTX Langmuir probes consist of a copper co-axial cable enclosed

in ceramic insulation. A stainless steel casing surrounds the assembly with a stainless steel

square (1 × 1 cm2) attached to the nickel wire to increase the collection area and, hence,

the strength of the signal measured (Figure 3.4B). It is typically biased at −200 V to collect

the ion saturation current (see diagram 2 in Figure 3.4). The plasma density can then be

deduced according to Ref. [27]

Isat ≈
1

4
qAniv̄i (3.1)
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Figure 3.4: Electrostatic probes used in CTX. A) Floating potential probe. B) Langmuir

probe, and C) Mach probe [Maslovsky (2003)].
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where, Isat is the saturation current measured by the probe through the termination resistor,

q is an electron charge, A is the area of the probe, ni local ion density, and v̄i is the ion

sheath velocity which is proportional to (Te/mi)
1/2. Here, mi is the ion mass.

Floating Potential Probe A floating potential probe is a Langmuir probe that has a

100 kΩ resistor attached at the tip. The signal is amplified through a matched wide-band

amplifier and then digitized (see diagram 1 in Figure 3.4). The floating potential fluctua-

tions measured by the probe are related to the plasma potential fluctuations according to

Hutchinson [27],

Vfloat ≈ Vplasma − 2.83
Te
q

(3.2)

where Te is an electron temperature in eV, and q is an electron charge.

Mach Probe A Mach probe consists of two Langmuir type probes biased in the ion sat-

uration regime and separated by an insulated tip as shown in Figure 3.4C. This enables

measurement of the differential plasma flow velocity by positioning the tip of the probe so

that one electrode is collecting an upstream current and the other one the downstream cur-

rent. The Mach number of the plasma flow, which is the ratio of the ion velocity to the

plasma sound speed, can then be determined according to [26, 27, 22]:

M =
1

2
ln
(
Isat upstream
Isat downstream

)
(3.3)

The upstream electrode views a Maxwellian distribution of velocity shifted in the positive

velocity direction, allowing the upstream probe to collect more current relative to the sta-

tionary plasma. The opposite situation occurs for the downstream electrode. This electrode

sees the plasma moving away from it with a Maxwellian distribution shifted in the negative

velocity direction. Thus, the downstream electrode collects less current. A comparison of

the upstream and downstream currents allows the determination of the plasma velocity.

All of the described electrostatic probes can be repositioned radially to examine fluctu-

ations at different field lines. Signals from the probes are typically digitized with a LeCroy

8212A data logger for slow-varying signals, and with LeCroy TR6841 transient recorder for

fast-varying signals.



CHAPTER 3. COLLISIONLESS TERRELLA EXPERIMENT 28

floating grid

+90 V
-90 V

-9 V

 45.2  cm. 

O-ring

entrance aperture

 0.48  cm. 

Collector plate

 1.09  cm. 

 0.68  cm. 

Figure 3.5: Gridded particle analyzer [Maslovsky (2003)].

3.2.2 Gridded particle analyzer

To study the transport of energetic electrons, a movable gridded particle analyzer is em-

ployed, Figure 3.5. It is located 13 cm above the equatorial mid-plane, and consists of a

series of grids approximately 1.5 mm apart inside a stainless steel box which has an opening

centered on one side. The grids are biased to repel ions and electrons with energies less than

90 eV. The first two grids of the particle analyzer are left floating, the third grid is biased

at +90 V to repel ions, the fourth grid is biased at −90 V to repel electrons, and, finally,

the grid closest to the collector plate is biased at −9 V to repel secondary electrons from the

collector plate. Current is collected on a metal plate 0.23 cm2 and is carried along a 50 Ω

co-axial cable which is typically terminated into a 10 kΩ load. By changing the value of

the termination resistor, different time-response values can be achieved. The signal is then

amplified with an AM 502 differential amplifier and digitized with a LeCroy TR6841 8-bit

transient recorder.

The entrance aperture of the probe can be rotated with respect to the local magnetic

field vector. During the experiments described here, it was positioned perpendicular to the
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magnetic field, and a time-averaged energetic electron flux was computed.

3.2.3 X-rays

In CTX, x-ray emission is used to infer the amount and energy of energetic electrons. When

1−60 keV electrons produced during a CTX discharge are decelerated via cold ion and neutral

atom collisions, hard x-ray radiation is produced. The amount of x-rays is proportional to

ne · nn · ni, where ne is the hot electron density, nn is the density of the neutral atoms, and

ni is the ion density. The x-ray radiation is detected with a krypton proportional counter

located on top of the vacuum vessel (Figure 3.1) through a quartz window. The x-ray

detector was calibrated to account for the window and port cover absorption using samples

of radioactive Co-57 and Fe-55 and can be configured to provide pulse count or continuous

output of collected x-rays.

In addition to the hard x-ray measurements, an array of three soft x-ray diodes focused on

the inner, central and outer plasma regions respectively, measure line-of-site averaged plasma

density at these three regions. These offer a method to estimate the electron pressure profile.

3.3 Installations to the CTX Device

New installations to the CTX device have been designed to extend the versatility of the

experiment. To extend the understanding of interchange modes to those induced by plasma

rotation, a new diagnostic and plasma control system has been installed to alter the plasmas

electrostatic potential and to diagnose polar currents and particle fluxes.

A schematic of the new installations is shown in Figure 3.6 along with the magnetic field

lines and magnetic field strength of the CTX experiment.

3.3.1 Equatorial Tungsten Mesh Biasing Array

An array of six individually biased tungsten meshes have been installed in the CTX device,

distributed equatorially onto an insulating shell mounted onto the terrella. This equatorial

array is designed to alter the electrostatic potential of the plasma by biasing inner fieldlines

with respect to the vacuum chamber wall. The resulting electric field causes the plasma to
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Figure 3.6: A schematic of the tungsten filament bias cap and gridded particle detector array

in relation to the terrella electromagnet and magnetic field lines (red) and field strength

(blue) of CTX. The locations of the particle detectors can be seen, as well as the equatorial

tungsten mesh assembly.
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( a ) ( b )

( c )

Figure 3.7: Photograph of the installations: (a) the tungsten meshes can be seen along

the circumference of the cap; (b) the polar imaging diagnostic array, and; (c) the tungsten

filament array in operation.
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rotate azimuthally via the E×B drift. When the filament potentials are adjusted within the

range 100V-1kV, significant modifications to the plasma’s electrostatic potential occur. Peak

radial electric fields of ∼ 20 V/cm and plasma mass flows corresponding to orbit frequencies

more than 100 kHz are seen. A significant part of this investigation involves the study of the

effect of plasma rotation on the dynamics of intense interchange instabilities in a magnetic

dipole, including the excitation of the rotational Rayleigh Taylor instability.

A photograph of the biasing system is shown in Figure 3.7(a). The bias cap itself is built

from a spun stainless steel dish plasma-spray coated with 12 mil thickness of alumina. Such

a coating insulates to roughly 4-5 kV, and is compatible with ultra-high vacuum operation.

In Figure 3.7(c) the mesh array is shown in steady state operation, employing a DC power

supply with a current of 25 A and a voltage of 35 V, while the emission current was several

mA, corresponding to about 0.5 W of power. In addition, a capacitively pulsed power supply

has been built and discharges up to 200V in 0.1-0.2 seconds, which heats up the filaments

to approximately 1500-2000 K. The biasing power supply is a Bertan Associates Inc. (BA)

Model 210-05R high voltage power supply, with peak output of 5 kV and 40 mA. A schematic

of the biasing system is shown in Figure 3.8(a), with a circuit diagram of the filament pulser

shown in Figure 3.8(b). The voltage divider is used to monitor the bias on the meshes

directly, while the bias power supply voltage and current monitors are also digitized and

monitored during experiments.

The individual tungsten filaments are 22x15 cm2, with a wire thickness of 0.001” and

mesh density of 100x100 wires/cm2. Picture of the mesh and the stainless steel clamps used

to connect it to the insulated bias cap are shown in Figure 3.9.

The independence of the meshes allows application of axisymmetric as well as nonax-

isymmetric potentials. Potentials with a symmetry up to m = 3 are possible. This allows

the study of driven, non-axisymmetric plasma convection, and synchronous application of

potentials to the plasma. For the investigations discussed here, however, the meshes were

run almost entirely in series, as an axisymmetric m = 0 potential.
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Figure 3.8: (a) Schematic of the biasing system of the tungsten mesh array and, (b) circuit

diagram of the filament pulser power supply.
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(a)

(b)

Figure 3.9: Pictures of a tungsten mesh and the clamp assembly.

3.3.2 Polar Gridded Energy Analyzer Imaging Diagnostic

On the opposite side of the terrella to the filament cap, another insulated polar cap is

mounted, shown in Figure 3.7(b), housing an array of 96 polar particle detectors. The aper-

tures for these detectors are 1 cm2. The particle detectors are distributed uniformly on

a rectangular grid in the natural, magnetic flux coordinates (ϕ,ψ). Due to past research

support, we have on-hand 72 channels of high-speed, high-bandwidth transient recorders

(1 MHz, 14 bit, 128 ks/record), multi-pin vacuum feed-throughs, and transimpedance am-

plifiers. The detector provides a good approximation to the bounce-averaged phase-space

distribution, F , by measuring the flux of energetic electrons scattered to the poles as a re-

sult of electron-neutral collisions. The detectors have three biasing grids as well as a current

collector plate. The grids are typically biased at +500 V to repel ions, −2 kV for electrons

and −9 V for secondary electrons, respectively. An individual detector schematic is shown

in Figure 3.10.

The detectors collect polar particle flux integrated along fluxtubes, as shown in Figure 3.6.

The grid of detectors consists of eight radial locations by 24 azimuthal locations. The radial
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Figure 3.10: Photograph of the tungsten filament array in operation.

extent of the volume collected by the imaging diagnostic ranges from the innermost flux

surface to the scrap off layer (SOL), which corresponds to the last closed fieldline.



Chapter 4

Curvature Driven Instabilities in CTX

This chapter describes the type of magnetic curvature driven instabilities seen in the CTX

device, namely, the Hot Electron Interchange (HEI) instabilities. After giving a physical

description of the modes we then introduce the multi-probe correlation analysis and the

global mode structure it is used to determine. This mode structure is then compared with a

self-consistent nonlinear simulation which shows marked agreement with experiment. These

results constitute the first measurement of the global mode structure of the low frequency

HEI instability, and were first reported in Ref. [36]

4.1 Observation of HEI

In the presence of an intense hot electron population, drift-resonant (ω ∼ mωd) fluctuations

are observed, both during and after the microwave heating pulse. Some characteristics of the

fluctuations in these two time periods are different. With the heating on, the fluctuations

appear as repetitive short bursts, 300-500 µs, while during the afterglow they may last as

long as several msec. In addition, the afterglow fluctuations have a higher frequency, with

coherent modes rising in time up to 20 MHz. During the heating regime, the fluctuations are

generally observed to have f ≤ 5 MHz and have a more dynamic, rapidly-changing spectral

content. In both intervals, the frequency spectrum is complex and time-varying, exhibiting

rising tones in time.

Figure 4.1 shows the floating potential fluctuations on various relative time scales. The

36
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first figure shows a long time scale, and instabilities are present both during heating and

during the afterglow. The mode amplitude typically saturates at a level between 100-200

V. On a faster time scale, the fluctuations are seen to be non-sinusoidal and slowly change

in time. This change represents the presence of multiple azimuthal modes with frequencies

that evolve at different rates. When the same fluctuations are observed by two probes that

are azimuthally separated by 90◦, the phase difference indicates a low-order mode structure

that rotates in the direction of the electron ∇B drift.

The differing nature of the instability during and after the microwave heating phase

can be explained as follows. Instability bursts eject plasma radially, flattening the pressure

profile that drove it unstable. Since the microwave is still producing plasma, the pressure

gradient builds up again, driving the instability in this periodic fashion. In the afterglow,

plasma production has ceased, and the colder stabilizing plasma recombines first, leaving

the unstable hot electrons to persist, until they themselves eventually recombine.

4.2 Correlation Analysis

Five movable high impedance floating potential probes (with 100 kΩ tips) are located at

various positions in the plasma. These probes are used to reconstruct the mode structure

using cross-correlation analyses of combinations of probe pairs and a fixed “reference” probe.

Although the movable probes can access regions extending from the dipole magnet to the

vacuum chamber wall, measurements are possible only when the probe’s location does not

interfer with the bulk of the energetic trapped electrons. Referring again to Figure 3.2, four

of the five probes are inserted at a ±30◦ angle with respect to the dipole’s axis. These probes

can be inserted very near the electron cyclotron resonance (R ∼ 27 cm) since the most deeply

trapped electrons have insufficent parallel velocity to strike the probe. In contrast, the probe

inserted at the equator can be inserted only to approximately R ≥ 45 cm.

Since the magnetic field line geometry is known, the probe positions can be expressed

with a geometric labeling of the magnetic coordinates in analogy with McIlwian.[47] The

radial coordinate for a field line is its equatorial distance, R. Distance along a field line is

labeled by s, and the azimuthal coordinate is ϕ. The measured probe position is mapped

to its equivalent magnetic coordinate, (R, ϕ, s), by numerical computation. Because the



CHAPTER 4. CURVATURE DRIVEN INSTABILITIES IN CTX 38

Afterglow

0

– 1

1

Fl
oa

tin
g

Po
te

nt
ia

l
Fl

uc
tu

at
io

ns
(A

U
)

Relative Time (msec)
540 1 2 3

(a)
Pr

ob
e

1
Pr

ob
e

2

0 2 4 6 8 10

Time (µsec)

DF(c)

Pr
ob

e
1

Pr
ob

e
2

0 2 4 6 8 10
Time (µsec)

(b)

Figure 4.1: Floating potential probe signals of the drift-resonant instability on different time

scales. (a) A long time scale shows an instability burst during heating and a saturated

mode during the afterglow. On a faster time scale, (b) and (c), show the non-sinusoidal

waveforms from two spatially-separated high-impedance probes that illustrate the phase

difference between probes.
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plasma pressure is low and because most of the plasma volume is sufficiently far from the

dipole electromagnet, the field-lines follow approximately the trajectories from a point-dipole

in vacuum. The CTX dipole moment is M0 = B0R
3
0 = 1.7× 107 G cm3, and an approximate

relation exists between (R, ϕ, s) and the usual magnetic coordinates for a point dipole,

(ψ, ϕ, χ), defined by B = ∇ϕ ×∇ψ = ∇χ, where χ is the magnetic scalar potential. This

relationship is simply, (R, ϕ, s) ≈ (M0/ψ, ϕ,
∫
dχ/B).

Measurement of the mode structure is complicated by the simultaneous presence of several

modes, but it is simplified because the phase of the potential is constant along the field line.

The quantities to be measured are expressed in terms of a modal prescription for the voltage

measured by a probe located at (R, ϕ, s),

Φ(R, ϕ, s, t) ≡
∑
n,m

<
{
Φn,m(R, t) exp

[
i(mϕ+ k‖s+ kRR− ωnt)

]}
, (4.1)

where n is the mode index, and k‖, kR, and ωn may be slow functions of time. The amplitude,

Φn,m changes slowly in time, but we find it does not change in spatial structure. We also

find the |Φ| does not change significantly with s over the region accessible with the probes.

These observations justify the modal prescription a posteriori.

When the digitized signals from two probes are Fourier transformed, the transform of the

correlation between two probes, C(1, 2), is expressed as the product of one probe signal with

the complex-conjugate of the second. In terms of the modal prescription, this correlation is

Cn,m(1, 2) ≈ Φn,m(R1)Φ
∗
n,m(R2) exp

[
i(m∆ϕ+ k‖∆s+ kR∆R)

]
. (4.2)

Since ∆s = s1 − s2 and ∆R = R1 −R2 are known, the phase of the correlation can be used

to determine m, k‖, and kR. Our ability to use Equation 4.2 for mode analysis improves

as the time rate of change of the mode frequency vanishes, ∂ω/∂t ≡ ω̇n → 0, or as the

frequency separation between nearby modes becomes large. This is because we must Fourier

transform the digitized waveforms with finite time-windows. Because the mode frequency

is not constant, a simple fast Fourier transform can not be used to transform the probe

signals. Instead, the slow-time evolution of the mode spectrum is computed using short-time

Fourier transforms with a continuously moving triangular (or “Parzen”) window, referred to

as a spectrogram or a time-frequency-domain (TFD) signal representation.[69] The TFD of

C(1, 2) is computed from the product of the short-time fast Fourier transforms of two probes
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Figure 4.2: Floating potential signal and TFD showing HEI instabilities during heating and

afterglow regimes [Maslovsky (2003)].

using identical, moving time-windows. Because the mode frequency evolves more quickly

during microwave heating than during the afterglow, the time windows can be longer and

the mode frequencies better identified during the afterglow. The short-time Fourier transform

(STFT) [8], is given by

|STFT (t, f)|2 =

∣∣∣∣∣
∫ + inf

− inf
x(u)w(u− t)exp(−i2πfu)du

∣∣∣∣∣
2

(4.3)

where x(u) represents the signal and w(u−t) is some suitably chosen windowing function [71].

An example of a TFD showing both heating and afterglow instabilities is shown in Fig-

ure 4.2.
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4.3 Measurement of Global Mode Structure

The overall procedure for measurement of the global mode structure can now be described.

First, three probes are placed at the same azimuth, ϕ, and adjusted radially to be located

on the same field line, R. The relative amplitude of the Fourier transform of the correlation

of any two of these probes is used to determine the variation of |Φn,m| along the field, and

the variation of the phase is used to measure k‖∆s. This measurement is important since it

establishes the flute-like nature of the electrostatic fluctuations and simplifies the analysis

of the following measurements. We find k‖ ≈ 0 for all modes, and the amplitude varies by

less than 10% between the three probes. The second part of the procedure uses three probes

to determine kR and m from the phases of the correlations of two separated probes with a

fixed reference probe located at R = 49 cm. Since these probes are located at different R,

the phase information is meaningful only if the magnitudes of the correlations between all

probes is large. Since the mode structures are broad, we find significant correlation for all

modes and for all probes separations. The final step determines the radial variation of the

mode amplitude by correlation analysis of a probe that is moved in increments approximately

δR ∼ 2 cm for successive plasma discharges. The ratio of (1) the correlation between this

moving probe and the fixed reference probe and (2) the self-correlation of the reference

probe results in the normalized radial mode structure for any given mode. This is defined as

Φn,m(R2)/Φn,m(R1) ≡ |C(1, 2)|/|C(1, 1)|, and the profile is obtained as the position of the

second probe, R2, is moved relative to the fixed position of the first probe, R1.

In order to illustrate the complexity of the frequency spectrum, the time-frequency do-

main of the magnitude of the correlation between two probes separated only in azimuthal

angle is shown in Figure 4.3. In this example, ∆R ∼ ∆s ∼ 0, and ∆ϕ = 90◦. The figure

shows the slow evolution of the potential oscillations during the afterglow, ω̇n/ω
2
n ∼ 2×10−4.

The modes with larger amplitudes are labeled by their azimuthal mode numbers, m. Note

several modes exist simultaneously with the same azimuthal mode number but with differ-

ent frequencies. For example, three modes with m = 1, m = 2, and m = 3 are identified.

The frequencies of harmonic modes evolve in time at rates different from the fundamental,

and this corresponds to the time-evolution of the non-sinusoidal waveform of the potential.

An example of this harmonic structure are the modes at approximately 2.4, 4.7, 7.0, and
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9.4 MHz. Many modes with different m number do not appear to be harmonically related

(i.e. the ratio of frequencies are not rational numbers.) For example, several m = 1 modes

co-exists near 1 MHz. The low frequency, m = 1, modes usually have the largest magnitude,

but this is not always the case. The amplitudes of harmonic modes usually decrease with

increasing frequency.

The relative amplitudes of the modes change appreciably in time, as can be seen from

the TFD of the correlation magnitude. Often, the higher m modes begin to increase in

magnitude as the mode evolves while the amplitude of the prominent m = 1 mode gradually

decays. Sometimes the m = 1 and m = 2 modes have equal amplitude, and, occasionally,

the m = 2 dominates. This observation necessitates our measurement of the normalized

structure for each azimuthal mode using correlation analysis with the fixed reference probe.

The radial mode structure must be reconstructed from many similarly-prepared discharges,

but the relative amplitudes of the modes as well as their frequencies at any instant are never

the same from discharge to discharge. However, we find the amplitude for any given mode

at any given position relative to the amplitude at the fixed reference probe to be essentially

time-invariant.

While two probes azimuthally separated were used to determine m, other probes posi-

tioned on the same field line were used to determine the field-aligned mode variation. For

example, Figure 4.4 illustrates the phase difference between two probes with ∆R = ∆ϕ = 0,

R = 49 cm, and ∆s ≈ 35 cm. These measurements were made for the same discharge as

illustrated in Figure 4.3, and Figure 4.4 shows the phase difference, k‖∆s, for the largest

amplitude, m = 1 mode as a function of time. Similar analyses were made for other modes,

and all modes show a constant phase structure along a field line. Since the equatorial probe

was used for these measurements, only field lines having R > 45 cm could be accessed

without perturbing the energetic trapped particles. The probe positions were approximately

s ∼ 0 and s = ±35 cm, and, for these positions, we find the relative mode amplitudes are

comparable to within ±10%. These measurements indicate the potential fluctuations are

flute-like.

The final step in mode measurement procedure is to analyze the relative phase and

amplitude of the correlation of two probes with increasing radial separation. Probes located

off the equatorial midplane were used (probes #4 and #5 in Figure 3.2) since these probes
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Figure 4.3: TFD of the magnitude of the correlation function of two floating potential probes

with ∆R = ∆s = 0 and ∆ϕ = 90◦ graphed with a linear grey-scale. Shown below is the

short-time frequency spectrum of the correlation at an instant during fully-developed and

saturated oscillations. The azimuthal mode numbers are shown.
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Figure 4.4: The field-line phase difference of the correlation function for two probes posi-

tioned at two locations along the same field line, ∆R = ∆ϕ = 0 and ∆s ≈ 35 cm, showing

k‖ ≈ 0 for several modes during the afterglow.

could be inserted deep into the plasma and near to the dipole magnet without disturbing the

energetic electrons or the potential fluctuations observed by the reference probe. By using

multiple probes, correlation analysis of the TFD identified both the azimuthal mode and the

radial variations. Since k‖ ∼ 0 and since m is known, probes located at any position within

the plasma can be used to compute the radial correlations.

Figure 4.5 and Figure 4.6 show the results of these measurements. In Figure 4.5, the

three lowest m numbers were examined at three different times in a single discharge but

with each radial location representing averages of several shots having the movable probe

at different positions. We observe no apparent time dependence in the phase, and there

is no change in the phase with radius. Since kR ∼ 0, the mode structures rotate as rigid

structures, with no phase lag. In Figure 4.6, the radial profile of the normalized magnitude

of the two-probe correlation shows the radial structure to be broad and to depend weakly

on the azimuthal mode. Higher m modes are seen to be more localized toward the core,

as might be expected. In all cases, the mode structure extends from the edge to the inner

hot electron region, and they are not localized to particular flux surfaces. In addition, no
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time dependence is observed in these normalized profiles, as seen in Figure 4.7, although the

relative amplitudes of one mode with the other are observed to vary in time. In making these

observations, we find it noteworthy that the global mode structures are time-independent

despite the complex and time-variation of the fluctuation’s frequency spectrum.

4.3.1 Mode Structure in the Heating Regime

In addition to measuring the global mode structure of the HEI instability during the after-

glow, equivalent measurements were made of the bursting interchange instabilities observed

during microwave heating. As described by Warren,[69] clearly identified modes with well-

separated frequencies are observed during the second half of every burst. The rate of change

of the mode frequencies are approximately ω̇n/ω
2
n ∼ 0.2, considerably faster than during the

afterglow. Nevertheless, modes with m = 1 and m = 2 were identified. We found the radial

structure for these modes to be the same as shown in Figure 4.6; however, averaging over

discharges showed a larger variance especially for the radial variation of the phase, kR∆R.

The phase and normalized amplitude of the correlation function as a function of radius

during the microwave heating are shown in Figure 4.8 and 4.9 respectively. Note that the

azimuthal phase is not subtracted off from the total correlation phases plotted in Figure 4.8

for the lowest three m numbers, yet it is still clear that kr ∼ 0 for the heating modes. In

Fig 4.9 the close comparison between the normalized correlation amplitude profiles during the

heating and the afterglow regimes is marked, though the heating modes appear marginally

steeper than their afterglow counterparts. However, recall that the actual magnitude of the

modes during the afterglow is significantly larger.

4.4 Modeling the Nonlinear Evolution of the HEI In-

stability

This section describes the nonlinear, self-consistent simulation of the time evolution of the

hot electron interchange (HEI) instability used to interpret measurements of the global mode

structure. Previously, Ref. [44] described this simulation together with the linear dispersion

relation for HEI instability in a dipole-confined plasma. For completeness, we review again
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for the lowest three azimuthal modes. Results show kR ≈ 0 for all modes during the afterglow.

Solid lines are the relative phase difference of global modes computed from the nonlinear

simulation.
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Figure 4.6: Comparison of radial mode structure of the normalized correlation amplitudes

for m = 1, 2, and 3.

Figure 4.7: The normalized correlation amplitude for a m = 2 mode during three different

times in a shot, showing no significant time dependence to the profiles.
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Figure 4.8: The phase of the correlation between two probes as the radial separation increased

during the microwave heating for the lowest three m numbers.

the basic model equations and, then describe more fully the numerical procedure used to

compare simulation with measurement.

The simulation solves finite-difference approximations to the coupled, nonlinear model

equations for the evolution of the electrostatic potential and the field-line integrated number

densities of ions and energetic electrons. The simulation is similar to those described by

Refs. [74] and [58]. The electrostatic potential is advanced by solving the equation for

charge continuity subject to reasonable boundary conditions. However, unlike these other

nonlinear simulations, multiple groups of particles must be evolved simultaneously in order to

capture the drift-resonance between the energetic electrons and the azimuthal propagation

of the interchange instability. Refs. [74] and [58] required only a single equation for the

mass density; whereas, simulation of the HEI instability additionally requires evolving the

phase-space density of several groups of energetic electrons, each having different values of the

magnetic moment, µ. Finite-difference approximations to the model equations are integrated

using the numerical methods introduced by Zalesak[75, 76] and following an implementation

demonstrated by Guzdar and co-authors.[23]
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4.4.1 Model Equations

The model equations are described in the coordinates of an ideal, axisymmetric dipole mag-

netic field. The potential, Φ(ψ, ϕ, t), is assumed constant along a field line, consistent with

measurements and our understanding of interchange instability. The potential evolves in time

due to the divergence of net perpendicular current integrated over magnetic flux tubes and

subject to fixed boundary conditions. The divergence of perpendicular current either charges

or discharges flux-tubes. Energetic electrons contribute to this current through the ∇B drift,

and ions contribute through the polarization or inertial drift. In order to simplify the com-

putation of energetic electron dynamics, the energetic electrons are assumed to be deeply-

trapped with negligible motion along field lines, J ∼ 0. A neutralizing population of cold

electrons exists that is more uniformly distributed along the field line. Finally, to facilitate

an efficient spectral solution for the potential, we define an axisymmetric dielectric, ε(ψ, t),

proportional to the azimuthally-averaged ion number per flux tube, N i(ψ, t) =
∫
dϕNi/2π.

Using the notation in Ref. [44], the flux-tube average is defined as 〈A〉 ≡ δV −1
∫
dχA/B2,

where δV (ψ) =
∫
dχ/B2 is the volume of a flux-tube of given flux, dψdϕ. The model

equations describe only the dynamics of the total particles on a tube of unit flux, N ≡ 〈n〉δV ,

but the particle density, n, can vary along a field line. Since the magnetic field of the

point-dipole is relatively simple to characterize, expressions for the field-line integrals can be

computed after making reasonable assumptions of the field-line density profile.

Effectively, there are three coupled, nonlinear equations to be solved in the simula-

tion. These are: the time evolution of the potential, δV 〈∇ · ∇Φ̇〉 = −4πe
(
Ṅi − Ṅe

)
≡

−4πe∆ρ, the evolution of the ion number, Ṅi = −δV 〈∇ · niVi〉, and the evolution of sev-

eral populations of energetic electrons having different magnetic moments, 〈ṅe〉δV ≡ Ṅe =∑
µ Ḟµ(ψ, ϕ, t). To denote the time derivative, we use Ȧ ≡ ∂A/∂t. The rate of change of net

charge on a flux tube due to the integrated divergence of the perpendicular current is ∆ρ.

In the expression for the electrons, Fµ is the number of electrons with a given µ on a given

flux-tube. Fµ(ψ, ϕ, t) is a bounce-averaged phase-space density that evolves according to the

guiding center drift Hamiltonian.[69]

The field-line integral of the ion current depends upon the density profile along the field-

line. We call this integral the density-weighted average, defined as ‖A‖ ≡ 〈An〉/〈n〉 =
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N−1
∫
dχn(χ)A/B2. In this notation, the ion continuity equation is

∂Ni

∂t
+

∂

∂ϕ
(Ni‖∇ϕ ·Vi‖) +

∂

∂ψ
(Ni‖∇ψ ·Vi‖) = 0. (4.4)

For cold ions and for low-frequency interchanges with ω � ωci, Vi is the sum of the E×B

and polarization drifts. This substitution gives

∂Ni

∂t
+

∂

∂ϕ

[
cNi

(
−∂Φ

∂ψ
−
∥∥∥∥∥ |∇ϕ|2ωciB

∥∥∥∥∥ ∂Φ̇

∂ϕ

)]
+

∂

∂ψ

[
cNi

(
∂Φ

∂ϕ
−
∥∥∥∥∥ |∇ψ|2ωciB

∥∥∥∥∥ ∂Φ̇

∂ψ

)]
= 0. (4.5)

The first term in parentheses is the E × B drift, and the second term is the polarization

drift. This second term represents the plasma dielectric response, and the azimuthal average

of this term will serve as the dielectric, ε, when solving for Φ̇.

Since the field-line profile of the plasma density is not known, we invoke an important

simplification in order to compute the density-weighted integrals. The density profile is

assumed to be relatively broad and vary on all field lines as n ∝ sin θ, where θ is the polar

angle from the dipole’s axis. For a point-dipole, the magnetic coordinate, χ, is related to

the polar angle as χ = (ψ2/M0) cos θ/ sin4 θ. With this density profile, the density-weighted

averages are ‖|∇ϕ|2/ωciB‖ ≈ 0.66M2
0B0/ψ

4ωci0 and ‖|∇ψ|2/ωciB‖ ≈ 0.77M2
0B0/ψ

2ωci0,

where ωci0 is the ion cyclotron frequency at B = B0.

The field-line integrals of the Laplacian in the equation for the potential take a particu-

larly simple form in dipole magnetic coordinates. The linear Poisson’s equation becomes

hϕ
∂2Φ

∂ϕ2
+ hψ

∂2Φ

∂ψ2
= −4πe (Ni −Ne) ≡ −4πeρ, (4.6)

where ρ(ψ, ϕ, t) is the net charge on a field line. Two geometric terms define the transforma-

tion of the Laplacian operator into field-line averaged flux-coordinates: hϕ ≡
∫
dχ/|∇ψ|2 =

2M0/ψ
2 and hψ ≡

∫
dχ/|∇ϕ|2 = 4M0.

The electrons are grouped by magnetic moment, or effective energy µB0, and separate

evolution equations are needed for each energetic electron group. The collisionless guiding-

center evolution of electrons with constant moment µ is governed by the following equation

∂Fµ
∂t

+
∂

∂ϕ

[(
ωd(µ, ψ)− c

∂Φ

∂ψ

)
Fµ

]
+

∂

∂ψ

[
c
∂Φ

∂ϕ
Fµ

]
= 0. (4.7)

Equations 4.5 and 4.7 and the time derivative of Equation 4.6 can be combined to form

the equation used to evolve the electrostatic potential. This requires proper treatment of
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the ion polarization currents. For our simulation, we desire to preserve the form of the

Laplacian operator since this form can be inverted easily. We achieve this by defining an

“axisymmetric” dielectric constant, ε, in terms of the azimuthal average of the ion number,

N i. The remaining non-axisymmetric part is defined as Ñi ≡ Ni−N i. Using these definitions,

the equation for the evolution of the potential used in the numerical simulation is:

hϕεϕ(ψ, t)
∂2Φ̇

∂ϕ2
+ hψ

∂

∂ψ
εψ(ψ, t)

∂Φ̇

∂ψ
= −4πe∆ρ, (4.8)

where divergence of the integrated perpendicular current is

∆ρ(ψ, ϕ, t) ≡ ∂

∂ϕ

(
cρ
∂Φ

∂ψ
+ cÑi

∥∥∥∥∥ |∇ϕ|2ωciB

∥∥∥∥∥ ∂Φ̇

∂ϕ
+
∑
µ

ωd(µ, ψ)Fµ

)

− ∂

∂ψ

(
cρ
∂Φ

∂ϕ
− cÑi

∥∥∥∥∥ |∇ψ|2ωciB

∥∥∥∥∥ ∂Φ̇

∂ψ

)
, (4.9)

and the time-dependent, axisymmetric dielectric functions are

εϕ(ψ, t) = 1 + 4πec
N i

hϕ

∥∥∥∥∥ |∇ϕ|2ωciB

∥∥∥∥∥ ≈ 0.3
〈ω2

pi〉
ω2
ci

(4.10)

εψ(ψ, t) = 1 + 4πec
N i

hψ

∥∥∥∥∥ |∇ψ|2ωciB

∥∥∥∥∥ ≈ 0.18
〈ω2

pi〉
ω2
ci

. (4.11)

In CTX, 〈ω2
pi〉/ω2

ci ∼ 103 and scales with radius as ∝ N i/ψ
2. Equation 4.8 requires the most

computation to solve since, at each time-step, we iteratively invert the Laplacian operator

on the left-hand-side (LHS) to arrive at improved approximations to Φ̇ which also appears

on the right-hand-side (RHS).

Nonresonant dissipation of the electrostatic potential fluctuations is required for numeri-

cal stability, since little numerical dissipation results from the transport of ions and electrons.

Explicit damping of the potential is added. Once a solution for Φ̇ has been found, the po-

tential is advanced in time from t to t+ ∆t according to,

Φ(t+ ∆t) = Φ(t) + ∆tΦ̇− (−1)k∆tν∇2kΦ(t), (4.12)

where ν is a specified constant and k = 0, 1, 2, ... sets the length scale for dissipation. For the

simulation comparisons to be discussed in this chapter k = 1, though, as will be discussed

in the next chapter, k = 2 damping was used to reproduce the rotationally driven mode

structure.
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4.4.2 Global Mode Structure Comparison

The numerical solutions exhibit many characteristics observed in the experiment.[44] For

example, the HEI instability is destabilized only for a sufficiently large fraction of ener-

getic electrons. The simulation also shows frequency chirping, multiple azimuthal modes,

and strong modulation of energetic electron flux during nonlinear saturation. Figure 4.10

illustrates the time evolution of the electrostatic potential as computed by the simulation

from initial conditions consistent with the experiment. The instability grows quickly to large

amplitude, e|Φ| ∼ 0.1µ0B0, and develops a relatively complex, time-evolving frequency spec-

trum with ω̇/ω2 ≈ 0.09. Azimuthal modes with m = 1, 2, and 3 can be detected easily, and

the global structure of these modes can be “measured” by computing the Fourier transform

of the simulated potential. In this subsection, the initial conditions for this solution are

described, and the computed global mode structure is compared with measurements.

The initial potential fluctuations are set to randomly-phased, low-amplitude oscillations

that vary sinusoidally in both the ψ and ϕ directions. The initial profiles of the ions and

the energetic electrons are axisymmetric with an initial radial variation of the form f(ψ, t =

0) ∝ (ψmax − ψ)b (ψ − ψmin)
c, where the parameter b is chosen to to insure ∂f/∂ψ = 0 at

ψ = ψ0 and c is adjusted to change the steepness of the profile. For the energetic electrons,

c = 4 and b = 2.46. For the ion number density, the initial profile was the sum of two equal

parts: a constant and a gradual radial variation with c = 1 and b = 0.62. At the density

peak, R = R0, half of the electrons were energetic and half were cold.

The distribution of energetic electrons are modeled with five energy groups, F (µ, ψ, ϕ) =

α(ψ)
∑5
i=1 β(µ = µi), with µi/µ0 = 0.5, 0.75, 1.0, 1.25, and 1.5. The initial radial profile,

α(ψ) has the form described above, and the initial profile for each electron group is identical.

The function β(µ) ∝ (2µ/µ0) exp(−2µ/mu0) determines the relative number density of each

of the five groups of energetic electrons. As the instability develops, resonant electrons are

strongly mixed in radius; however, the total number of electrons with each value of magnetic

moment is constant.

In Figure 4.10, the normalized dissipation rate was ν = 0.005. For global modes, this

causes a non-resonant damping of the order, ∂ log Φ/∂t ∼ 10−5ωd0 � ω. For broad, long-

wavelength modes, this is a very small dissipation rate, but it nevertheless influences the
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Figure 4.10: Self-consistent time evolution of the electrostatic potential computed using the

nonlinear simulation. The TFD of the potential oscillations computed by the simulation

show multiple modes and frequencies rising in time that resemble Figures 4.1 and 4.3. Time

is normalized to ω−1
dh0, and the potential is normalized to µ0B0/e.
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solution significantly. If ν is decreased to 0.003, the frequency changes more slowly in time,

ω̇/ω2 ≈ 0.07. If ν is increased to 0.01, the frequency “chirps” more rapidly, ω̇/ω2 ≈ 0.2.

The global structures of the modes simulated numerically are viewed by performing

Fourier transforms of the computed potential, Φ(ψ, ϕ). The relative radial variations of

the amplitude and phase of an azimuthal mode, Φm(ψ), can be compared directly with

experimental measurements.

When this comparison was first made, we noticed a sensitivity to the location of the outer

boundary, ψ = ψmin, where Φ is forced to vanish. When ψmin was set to correspond to inner

radius of the vacuum vessel, R = 67 cm and ψmin/ψ0 = 0.4, the computed mode structures

were more peaked than seen experimentally. As the outer boundary was moved to larger

radii, the global modes in the simulation broadened. Several simulations were computed

as the outer boundary gradually increased to R = 98 cm, or ψmin/ψ0 = 0.27. From these

we were able to identify the outer location that minimized the magnitude of the difference

between the simulated and measured mode structures for the lowest three modes, m = 1, 2,

and 3. This occurred when Rmax = 77 cm, or ψmin/ψ0 = 0.35. If only one mode (instead of

three) was compared, the optimal location for the outer boundary was different. The m = 1

mode optimized at larger Rmax while m = 3 optimized at slightly smaller Rmax.

While we are not certain of the reason why a larger diameter for the outer boundary is

required for the simulation to match the experiment’s mode structures, we believe it results

from the large geometric difference between the cylindrical vacuum vessel and the dipole’s

field lines. As shown in Figure 3.2, the field-lines are tangent to the vacuum vessel at

R = 67 cm. This limits the extent of energetic electrons, but not the colder plasma. As a

Langmuir probe is moved outward, beyond the last flux tube not obstructed by the vessel,

the plasma density drops abruptly by more than a factor of two, but this does not eliminate

HEI potential fluctuations. Obviously, the experimental boundaries are much more complex

than simulated, and it is perhaps not surprising that some adjustment is required to match

these conditions.

The computed nonlinear global mode structures are shown in Figures 4.5 and 4.11 when

the outer boundary was set to Rmax = 77 cm. Radial profiles of the radial phase difference,

kR∆R, generated from the simulation form = 1, 2, and 3 are shown as solid lines in Figure 4.5

(and superimposed onto the experimental data.) The computed phase difference with radius
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is small. As in the experiment kR ∼ 0. Figure 4.11 compares the radial variation of the

mode amplitudes with the observed normalized correlation amplitudes (which are also shown

in Figure 4.6). As seen experimentally, the ratios of the mode amplitudes evolve in time,

but the form of radial structures are essentially constant once the amplitude saturates. In

Figure 4.11, the computed mode amplitudes were normalized to minimize the least squares

difference between simulation and experiment. The profiles are peaked near the peak of the

energetic electron density at R0 = 27 cm. Modes with higher m are more centrally peaked

than modes with lower m.

Poisson Equation

The model equations give insight into the electrostatic potential structures of different az-

imuthal modes. If the net oscillating charge on the flux tubes, ρ, were non-zero only near the

peak density of the energetic electrons (eg. R ≈ 27 cm), then Equation 4.8 can be used to

solve for the radial mode structure by separation of variables. Let ∆ρ→ 0 except for a narrow

region near ψ ≈ ψ0, and let the potential have the form Φ(ψ, ϕ, t) = g(ψ) exp[−i(ωt−mϕ)].

If we further take N i to be a constant in order to simplify the form of the plasma dielectric

(Equations 4.10 and 4.11), then the radial structure function, g(ψ), must satisfy the equation

ψ4 ∂

∂ψ

(
1

ψ2

∂gm
∂ψ

)
− 0.83m2gm = 0. (4.13)

With the vacuum vessel wall at infinity, the outer solutions have a simple form gm ∼ ψa ∼
1/Ra where a = 3/2 +

√
9/4 + 0.833m2. The lowest three azimuthal modes are g1 ∼ 1/R3.3,

g2 ∼ 1/R3.9, and g3 ∼ 1/R4.6. These expressions are reasonably close to the radial depen-

dencies shown in Figures 4.6 and 4.11, although the actual mode structures are less peaked.

The profiles given by Equation 4.13 are plotted in Figure 4.11 as the solid blue lines. Equa-

tion 4.13 also offers a simple and perhaps general explanation of our key results. Indeed,

during the simulation, ρ(ψ, ϕ, t) is monitored, and the largest oscillations of ρ do occur near

the peak of the energetic electrons.

The inner structures of the global modes could not be measured. As probes moved

inward, the intensity of the artificial radiation belt was significantly perturbed. For this

reason, we are unable to make any conclusions pertaining to the inner boundary condition
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at the surface of the dipole magnetic nor the mode structures near and within the radius of

peak energetic electron density.

4.5 Summary

The global mode structure of low frequency interchange instabilities driven by energetic

electrons was measured using time-frequency-domain analysis of the correlations between

multiple high-impedance probes. A modal prescription was used to simplify the correlation

analysis of movable high impedance floating potential probes. By positioning the probes

appropriately, the HEI instability was seen to be flute-like with k‖ ∼ 0 with multiple az-

imuthal modes peaked in amplitude near the peak density of energetic electrons. The modes

have a time-evolving frequency spectrum, but the form of the global mode structure does

not change significantly in time. The radial mode structures are relatively broad, and they

rotate rigidly with kR ≈ 0.

A nonlinear, self-consistent numerical simulation of the growth and saturation of the HEI

instability reproduces many observations from the experiment including the radial structures

of the lowest azimuthal modes. The agreement between the modes computed by the simula-

tion and the experimental measurements supports the underlying assumptions of the model

equations and the resonant phase-space dynamics reported previously.[44]

Although general characteristics of the numerical solutions to the model equation resem-

ble experimental measurements, several observations of the HEI instability in the experiment

are not modeled nor do we fully understand how to do so. During microwave heating, the

quasiperiodic bursts of instability have a more complex frequency spectrum than seen com-

putationally. Experimentally, a period of rising coherent modes occurs after a short period

when the frequency spectrum is relatively broad-band and turbulent. Broad-band fluctua-

tions have not been seen computationally. Perhaps, most significantly, the mode structure

of the HEI is sensitive to the experimental boundary conditions, and observations of the

fluctuations near and within the region of energetic electrons has been so far impossible.



Chapter 5

Centrifugally Driven Instabilities in

CTX

This chapter presents observational evidence of the rotationally driven interchange mode,

excited in the CTX device using external radial electric fields to set up azimuthal E×B flows

within the plasma. In the process, the bulk plasma response to the applied fields is discussed,

as well as a basic model explaining the mechanism of how the electric field is established and

the flows that result from it. The mode itself is described through an identical correlation

analysis as was carried out for the HEI instability in Chapter 4, and is also compared with

results from the same nonlinear code.

5.1 E×B Flows in CTX

5.1.1 Plasma Response to External Bias

In this section we describe the response of the equilibrium plasma to the external bias

of the equatorial tungsten mesh array. The main diagnostics employed are local probe

measurements, both biased and floating, as well as the voltage and current monitors of the

bias power supply itself.

Parameters as a function of bias In Figure 5.1 we show a comparison of two typical

shots, one without the external bias (shown in black) and one with the bias (red). The

59
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Figure 5.1: An example of the effect of the external bias on various plasma parameters.

Black is without bias and red is with bias.
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plot shows, from top to bottom, the current from a Langmuir probe biased at −200 V, a

floating potential probe, the actual bias on the filaments, and the Mach number from the

Mach probe. The equatorial radius of each probe is noted. Without the bias, we see roughly

constant plasma density, potential and flow. In contrast, as the bias is ramped up, the

floating potential of the plasma strongly increases negatively, coincident with an increase

in flow. In the case shown, a peak floating potential of −200V is observed. It is not as

immediately clear what the effect is on density, since the increase in floating potential causes

the current of the Langmuir probe to change signs, taking it out of ion saturation regime.

We point out that since the Langmuir probe is biased at −200 V, the plasma has a floating

potential of this value at the point when the probe signal goes through zero(this is pointed

out in the Figure), and then as the Langmuir signal continues to grow negatively, the floating

potential as well increases below −200V at the location of this probe. Thus, the Langmuir

probe ceases to become an accurate measure of density in this regime. The Mach probe

indicates a strong flow induced by the bias; with application of external biases up to −500

and −600 V, higher flows of M ∼ 1 are typical.

The slow regular oscillations seen in most probe measurements is in fact a 30 Hz oscillation

from the main electromagnet power supply, which causes a current ripple and is not related

to any plasma instability.

Parameters as a function of position Since all our measurements are local, radial

probe scans are necessary to look at global effects of the bias. Most important is the radial

scan of the floating potential, since it gives the induced electric field via, E = −∇Vf . Fig-

ure 5.2 presents the floating potential profile with and without the application of the external

bias. The large increase of the floating potential due to the external bias is evident, although

near 50cm the presence of the material probe begins to limit the plasma, and the floating

potential measurement tops out near −200V. Near 25cm, the inner boundary condition of

the bias on the tungsten meshes is plotted and a dotted line interpolates the continuation

of the increase in floating potential up to that value, which is unaccessible to the probes.

Similarly, for the unbiased case the grounded inner boundary condition is plotted with its

own interpolated profile.

The radial electric field, rotation velocity and rotation frequency interpolated from Fig-
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Figure 5.2: Radial scan of the floating potential with and without the presence of the external

bias.

ure 5.2 are presented in Figure 5.3. We use only the non-limited points from Figure 5.2 in

these calculations. The potential fits a 1/r profile, giving a 1/r2 electric field, a linear veloc-

ity profile and a constant frequency, ie. rigid body rotation. These results will be matched

closely with both experimental observation from fluctuations propagating in the E×B frame

in the next section and from equilibrium calculations in Section 5.3.

Figure 5.4 shows the Langmuir probe profile measured on the equatorial plane. Although

the bias does cause the sign of the current drawn by the Langmuir probe to switch sign,

as seen in Figure 5.1, it is possible to still measure ion saturation current at certain outer

locations within the plasma. Ion saturation current is shown normalized between one moving

Langmuir probe and one stationary probe. Ion saturation current is related linearly to density

through the relation Iisat ≈ 0.61eN0A
√
Te/mi, where A is the surface area of the probe, N0

is the unperturbed plasma density, Te is the electron temperature, mi is the ion mass and e is

the elementary charge. Profiles of Iisat are compared in the presence of the external bias and

without, and show overlapping profiles. We also plot the marginally stable density profile for

interchange instabilities in a dipole geometry, which will be discussed in the next chapter,
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Figure 5.4: Normalized ion saturation radial profile between one movable Langmuir probe

and one stationary probe for the biased and unbiased case. The solid black lines show the

marginally stable profile from interchange linear theory, n ∝ r−4.

simply to demonstrate that the measured profiles are sufficiently steep to drive interchanges.

In fact, the profile appears much steeper at this location. Due to the Te dependence it is

impossible to know the profile exactly without doing full Langmuir characteristics at each

probe location.

To monitor the density profile closer to the core of the plasma, soft x-ray measurements

were taken, since material probes destructively interfere with the plasma. An array of

three diodes focused on the inner, central and outer plasma regions respectively, measure a

flattening of the density profile at the inner plasma region in the presence of the bias relative

to the case without the bias. This observation is shown in Figure 5.5, and is also consistent

with interchange motion, which should cause diffusion of hot inner plasma and, therefore,

density profile flattening. The probe measurements in Figure 5.4 don’t show this since they

are near the plasma edge, where the soft x-ray signal also shows no change in the density

with bias.

The power provided in spinning up the plasma is measured from the voltage and current

monitors on the DC bias power supply. The dependence of supplied power on external bias
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..

Figure 5.6: Power provided by the bias power supply as a function of external bias for

different values of background neutral fill pressure.

is shown in Figure 5.6. Plots for several different values of background neutral fill pressure

are given as well. Clearly, higher power is required to spin up a denser plasma. Also of note

is the observation that the power peaks at a given value of bias, and then drops thereafter.

This is at a point in a shot when the plasma is already spinning rapidly and, presumably,

less current is required to drive the rotation.

5.2 Observation of Centrifugally Driven Interchange

Instability

After having described the effect of the external bias on equilibrium plasma parameters,

including the observation of a large radial electric field and rapid azimuthal plasma rota-

tion, we now discuss the effect on plasma fluctuations, and identity the centrifugally driven

interchange instability.

The time-frequency domain (TFD), or spectrogram, of the fluctuations, are plotted, as

measured by a fast, floating potential probe with a sampling rate of 200 kHz in Figure 5.7.

Coincident with the application of the bias, the increase in the DC floating potential of the
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plasma and the spinning up of the plasma, are seen fluctuations whose frequency increases

with the bias on the tungsten array. At the particular location of the floating potential

probe (L ∼ 60cm on Figure 5.2), the potential increases threefold, from −50V to −150V.

The lowest frequency mode, at roughly 25kHz, is the largest amplitude mode, with smaller

modes existing at frequencies of integer multiples of the fundamental. Thus, a single non-

sinusoidal mode is observed with smaller amplitude higher harmonics. These frequencies

are consistent with the E×B frequency calculated from the measured electric field and the

supplied dipole field given in Figure 5.3. Probe scans across the plasma volume also indicate

that the mode is rigidly rotating with a constant angular frequency, also consistent with

Figure 5.3.

Figure 5.8 shows a similar but more detailed plot, but of a shot where the power to the

magnetic field is at 70% of its peak value. Here, the floating potential fluctuations have been

sampled at 1MHz and the waveform in the time-domain in shown. One can differentiate

between two different regions in the TFD: an early low-bias region where the low frequency

mode is dominant, and a later higher bias region where a higher frequency - roughly 100 kHz

- mode becomes dominant. The waveform of the fluctuations is blown up in these regions

in Figures 5.8(b) and (c). The slightly triangular non-sinusoidal waveforms from two probes

separated by 90◦ azimuthally are shown for each case. The direction of propagation can be

obtained from the phase difference between the probes and confirms that the mode moves

in the E × B direction. The correlation analysis, which is described below, identifies the

azimuthal mode structure and identifies the low bias (early) region as beingm = 1 dominated

and the higher bias (later) region as being m = 2 dominated. This result is shown in the

amplitude spectra - also shown in the Figure - and will be explained by linear theory of

interchange instabilities driven by both pressure and centrifugal forces, also discussed below.

The amplitude of the m = 1 and 2 modes in the two different regions is plotted in

Figure 5.9 versus bias, and clearly shows the dominant domains for the lowest two azimuthal

modes.

We also note that the mode amplitude grows with higher background fill pressure. This

is consistent if the instability is mass-driven (as discussed below, HEI, on the other hand, is

stabilized in high density plasmas). This dependence is shown in Figure 5.10 for two different

values of external bias. We note that the amplitude decreases from the lower bias case to the
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The amplitude spectra of the fluctuations are dominated by m = 1 in the slower regime, and

(c) by a m = 2 in the faster regime.
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Figure 5.9: m = 1 and 2 mode amplitude as a function of external bias. We call the region

where m = 1 dominates Region 1 and where m = 2 dominates Region 2.

higher bias case for the same value of fill pressure simply because these biases are located

on the high bias side of Figure 5.9, where higher bias corresponds to lower amplitude.

We also plot the m = 1 mode frequency as a function of external bias in Figure 5.11.

In general the mode frequency increases with bias, as is clear from the TFD in Figure 5.7

or 5.8. In addition, the frequency is plotted for two different values of the magnetic field

(keeping the bias fixed), and shows an increase in frequency when the B field is lowered.

This is consistent with the E×B frequency, which goes as E/rB, where r is the radius. The

case where the mode shifts into the second region which is m = 2 dominated is also plotted.

Distinctions from HEI

At this point it is worth reiterating the differences between the spectrograms shown in

Figures 5.7 and 5.8 of the rotation induced mode and Figure 4.3 in Chapter 4 showing the

HEI instabilities. The frequencies of the fluctuations are on vastly different time-scales: HEI

is drift-resonant, fHEI ∼ mωd/2π ≈ 1 − 5MHz, while the rotation induced mode is two

orders of magnitude slower, at frot ∼ mωE×B/2π ≈ 25− 100kHz.

Another point of comparison is the physical mechanism leading to the observed increases
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Figure 5.10: m = 1 mode amplitude as a function of background neutral helium gas fill

pressure for two different external bias settings.

..

Figure 5.11: m = 1 mode frequency as a function of external bias for two different values of

magnetic field.
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Figure 5.12: Simultaneous observation of HEI and rotational mode during a low density shot.

(a) The floating potential fluctuations and their TFD are shown from one probe digitized

at 200 kHz and, (b) another probe sampling at 1 MHz picks up the characteristic HEI

fluctuations.

in frequency. For the rotational mode the increase is simply due to the increase of the bias

on the tungsten mesh array, and therefore the electric field and the rotation. The HEI

instability, on the other hand, displays nonlinear frequency sweeping, which results from the

inward movement of phase-space holes being exchanged with outward moving hot, dense

plasma [41, 40, 4]. In short, the former phenomena is driven, while the latter is spontaneous.

Having made the distinction clearer, we mention that both modes are observed in the

same discharges. Figure 5.12 shows floating potential fluctuations for a low density shot

(approximately an order of magnitude lower density than Figure 5.7 or 5.8) which display

the effects of both modes. The rotational modes fluctuations are shown on the kHz time
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scale in Figure 5.12(a), but appear to be arrested with a decreasing frequency coincident

with spikes in the potential. The signal from another probe digitized in the MHz range with

a low frequency filter is shown in Figure 5.12(b) and clearly shows these rapid modulations

to be due to the HEI instability.

This regime has not been studied exhaustively, but the following interpretation is con-

sistent with observations and our understanding of interchange dynamics, which we derive

in detail in the next chapter. Both modes require steep gradients: HEI depending on hot

electron gradients and the rotational instability on ion gradients. HEI bursts cause rapid

interchange motion and flattening of density profiles. They are periodic since ECRH plasma

production builds the density profile back up to its marginally unstable value in a charac-

teristic time, driving HEI unstable again. In the presence of the rotational mode, a rapid

flattening of the density due to HEI induced motion removes the rotational instability drive

as well as that of the HEI. Thus we see no fluctuations at all in Figure 5.12(a) immediately

following an HEI burst, followed by a slow buildup of the rotational mode fluctuations as

plasma production steepens the density profile again, and then ultimately an HEI burst

when its critical value is reached.

This interplay also goes in the other direction, ie. the rotational mode prevents the HEI

from going unstable as well. This is manifested in the decreasing periodicity of the HEI

bursts. Since the bias on the mesh array is increasing, the drive for the rotational mode is

also increasing. In the presence of a more unstable rotational instability it requires longer

for the hot electron profile to reach the critical gradient for HEI instability, since the former

mode is also interchanging plasma, though in a constant, less dramatic fashion, shown in the

soft x-ray measurements, Figure 5.5.

This complex interaction of plasma instabilities isn’t seen at higher densities since the

HEI saturates into broad-band incoherent fluctuations in this regime, where the plasma is

denser and colder and less hot electrons exist. Most observations of the rotational mode were

done in the high density regime since it has higher amplitude there as well as the fact that

HEI bursts and energetic electrons make probe measurements extremely difficult on other

bulk plasma phenomena.
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5.2.1 Correlation Analysis

The same correlation analysis that was performed for the HEI instability is also presented

here for the bias-induced fluctuations. In addition, modifications to the nonlinear particle

simulation that was employed in comparisons to the HEI mode structure is used here as well

to make comparison with the rotational instability mode structure.

When ∆ϕ = ∆R = 0 between two probes, only field-line information is retained. Cor-

relation phases for such a measurement confirm the flute-like nature of the observed mode.

That is, we confirm k‖ ∼ 0.

The azimuthal mode number frequency spectrum shown in Figure 5.8(b) and (c) is ob-

tained from the phase of the correlation function of two probes separated only in azimuthal

angle, ie ∆R ∼ ∆s ∼ 0, and ∆ϕ = 90◦. As mentioned, the lowest frequency, largest am-

plitude mode in the low bias region is identified as the m = 1 mode, with higher harmonics

of gradually decreasing amplitude, while the higher bias region is characterized by a large

m = 2 mode.

The radial phase and amplitude for the three lowest azimuthal modes are shown in Figures

5.13 and 5.14. In Figure 5.13, the three lowest m numbers were examined at three different

times in a single discharge but with each radial location representing averages of several shots

having the movable probe at different positions. In Figure 5.13 (a) the m number is plotted

versus radius. There is a nonzero radial phase, kr 6= 0, for all modes, markedly different

than the HEI modes. At roughly 55cm both probes are at the same location where there is

zero radial phase difference. Thus, purely azimuthal structure is measured at this location.

As one probe is moved off this location, the radial phase can be observed. A full π/2 radial

phase shift is seen between 55cm and roughly 36cm for all three modes. We observe no

apparent time dependence in the phase, as is shown in Figure 5.13 (b) for the m = 1 mode.

This is true for all modes.

In Figure 5.14, the radial profile of the normalized magnitude of the two-probe correlation

function shows the radial structure to be broad and to depend on the azimuthal mode

number, with lower m modes being broader generally. In all cases, the mode structure

extends from the edge to the inner hot electron region, and they are not localized to particular

flux surfaces (probes can only go in as far as the ECRH resonance location, whereupon their
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a)

b)

krDR=0

Figure 5.13: a) Phase of the correlation function between two probes as a function of the

radial position of one probe for the three lowest m numbers. b) Radial phase of the m = 1

mode at three different times during a shot. Solid line is the simulation result for m = 1.
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presence prevents plasma production). In addition, little time dependence is observed in

these normalized profiles, although the relative amplitudes of one mode with another are

observed to vary in time.

5.2.2 Comparison with Nonlinear Simulation

We have modified the nonlinear, self-consistent numerical simulation used to describe the

HEI mode in order to interpret the observed rotational instabilities. To accomplish this,

bulk rigid rotation was imposed, as is seen experimentally. Compared with the runs used to

study the HEI instability, these runs were characterized by lower hot electron populations

and higher plasma densities to stabilize the pressure driven modes to a degree, and steeper

ion profiles, since that provides drive to the mass-driven rotational mode. In addition, a

numerical damping of smaller wavelength modes was implemented: in Equation 4.12 we set

k = 2. With these amendments, the simulation reproduces the observed modes.

The simulation produces a global mode dominated by low m numbers, characterized

by dramatic ion mixing (Figure 5.16(b)) and a flattening of the ion density profile (Fig-

ure 5.16(a)), similar to Figure 5.5. The mixing starts off stationary with respect to the

rotating frame of reference, but develops complex patterns, sometimes with the inner region

rotating counter to the outer regions. With lower instability drive (lower rotation frequency)

the electrostatic potential is dominated by an m = 1 structure (Figure 5.16(c)), but higher

modes become dominant with increasing rotation frequency or steeper ion density gradient.

However, even when a relatively strong drive is applied, the long-time saturated state of the

instability often relaxes to an m = 1 structure, reflecting distinct behaviors in the linear and

nonlinear saturated phases.

The saturated mode structure reproduces key characteristics of experimental observation;

the radial profile of the normalized magnitude of the three lowest m modes is compared to

measured results in Figure 5.14; comparison of the radial phase profile for m = 1 is shown

in Figure 5.13 (b). In general, the simulation exhibits more time dependence in its solutions

than experimental observations, which are of instabilities in a nonlinearly saturated state.

To account for this, the mode structure comparisons were made with long-time runs of

the simulation which were, themselves, saturated. As time proceeds the ion density profile
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m=1

c)

m=3

Figure 5.14: Normalized magnitude of the correlation function between two probes as a

function of the radial position of one probe for the three lowest m numbers. Solid lines are

simulation results.
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flattens and the mixing slows. The corresponding electrostatic potential mode amplitude

peaks at some intermediate time, beyond which it begins to decay very slowly.

With very small hot electron fractions the mode is purely growing in the rotating frame of

reference. However, with the addition of larger energetic populations - which is the realistic

case - HEI modes begin to go unstable and impart a real frequency to the modes within the

E×B frame. This additional rotation is in the same direction as the original rotation since

the electron ∇B drift is in the same direction as the E × B drift, thereby increasing the

rotation. Very slow chirping can be seen, as in the pure HEI case. For one representative

case, we estimate the additional frequency to be ∼ 7 kHz. Of course, experimentally it

is difficult to differentiate between the sources of rotation, but this estimate is consistent

with the frequency inferred from the measured electric field in Figure 5.3: we calculate

approximately 19 kHz due to E × B rotation; if in fact the additional ∇B contribution is

about 7 kHz, then the total of 26 kHz is consistent with the experimental observations.

This point is important to note, since the real frequency of the HEI instability induces

polarization currents which are stabilizing. In Chapter 6 the linear dispersion analysis of the

combined interchange mode will show that these stabilizing currents are necessary in order to

reproduce the observation of unstable low m modes, since the polarization term is larger for

higher m’s. In this way, the addition of hot electrons to both the simulation and the linear

stability analysis is critical, and is consistent with our observations, notably Figure 5.12.

Specifically, we plot the mode amplitude for the four lowest m numbers for two values of hot

electron fraction in Figure 5.15. For the 5% hot electron fraction case, the m = 2 mode is

dominant in the linear growth phase of the simulated instability, while the m = 1 mode is

always dominant in the 20% case. These results corroborate the experimental findings that

a reduced hot electron fraction (the reduced B field case in Figure 5.8) allows the growth of

an m = 2 mode.

5.2.3 Summary of Experimental and Simulation Results

We summarize the experimental observations relating to the biased experiments thus far,

including equilibrium changes and fluctuation measurements.

• Floating potential measurements indicate that half of the potential difference between
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the inner tungsten mesh array and the grounded outer chamber wall is dropped across

the plasma volume which can be probed. We infer that the remaining potential differ-

ence is dropped across the region inaccessible by the floating potential probes.

• Electric fields of 10− 30 V/cm are induced across the volume.

• Subsequent E × B rotation of the plasma is observed with a Mach probe. Flows of

M ∼ 1 are typical. Flow increases with external bias.

• Langmuir probe measurements show density profiles which are steeper than L−4, which

is the marginal profile for interchange motion in a dipole.

• Soft x-ray measurements indicate a flattening of the density profile at the inner plasma

when the bias is applied.

• Floating potential probe fluctuations indicate a non-sinusoidal oscillation whose fre-

quency increases with the external bias, and is absent when the bias is not applied.

The frequency is in the range of the E × B frequency. The mode is rigidily rotating,

with constant angular frequency of roughly 25 kHz across the plasma volume.

• Comparisons from two probes indicate that the oscillation propagates in the E × B

direction.

• Correlation analysis shows the fluctuation to be a flute mode, with k‖ ∼ 0,

• The fluctuation mode amplitude increases with plasma density, suggesting that it is

mass driven.

• Decreasing the magnetic field increases the frequency of the fluctuations, further sug-

gesting that the mode is propagating in the E×B frame of reference.

• The global mode structure is measured and is reproduced by the self consistent non-

linear simulation driven by rigid body rotation, including the observation of higher m

modes become more unstable with higher instability drive, given by faster rotation or

steeper ion density profile.
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• The simulation indicates that resonant hot electrons impart a real frequency to the

rotational mode in the rotating frame of reference. The estimated magnitude of that

contribution is consistent with the difference between the measured mode frequencies

and the calculated frequency from electric field measurements.

5.3 Calculation of Radial Electric Field

In this section the equilibrium electric field induced by the external biasing of the mesh array

is discussed. Since plasmas tend to shield electric fields in narrow sheath layers, it is difficult

to generate a large scale field across a plasma volume. In this analytical model, collisions

between ions and neutrals as the ions are accelerated by the external bias is the mechanism

that sets up a radial volume current and, therefore, a radial electric field.

To determine the electric field, two methods are investigated. We first derive a bounce-

averaged O.D.E. for the potential in flux co-ordinates. This method elucidates the physics

nicely, analytically solving for the equilibrium using the ideal Ohm’s law and the continuity

equation, though at the expense of mathematical ease. Alternatively, we derive an expression

for the current required to rotate the plasma based on conservation of charge, and use it to

constrain the solution for the potential. The latter method is more direct, but we start with

the former for completeness.

5.3.1 Potential Calculation

We start with the relation,

J = σ · E = σpE⊥ − σH(E⊥ × b̂) + σoE‖, (5.1)

where the various conductivities are the Hall, Pedersen, and specific conductivities[30], re-

spectively, which are

σH = (ne/B)[κ2
e/(1 + κ2

e)− κ2
i/(1 + κ2

i)] (5.2)

σp = σi/[1 + κ2
i]− σe/[1 + κ2

e] (5.3)

σo = σi − σe, (5.4)
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where the σj are the electron and ion conductivies, njq
2/mjνj, and the κj are the ratios

between the cyclotron frequencies and the collision frequencies, ωcj/νj.

The field-aligned current is ignored in this case and the Hall current will be found to be

a posteriori insignificant compared to the Pedersen term. With that in mind, we have,

∇ · J = ∇ · (σpE⊥) = (∇σp) · E⊥ + σp(∇ · E⊥) = 0. (5.5)

We can put Equation 5.5 in dipole flux coordinates with the help of the following identity:

∇ · A = B2 ∂

∂χ

(∇χ · A
B2

)
+B2 ∂

∂ϕ

(∇ϕ · A
B2

)
+B2 ∂

∂ψ

(
∇ψ · A
B2

)
(5.6)

where the flux coordinates are defined by the ideal dipole magnetic field, B = ∇ϕ×∇ψ =

∇χ. In spherical coordinates, they are defined by ψ = M sin2 θ/r, χ = M cos θ/r2 and

B = (M/r3)
√

1 + 3 cos2 θ.

In flux coordinates, we then have for the electric field,

∇ · E = −B2 ∂

∂ψ

(
1

B2
|∇ψ|2∂Φ

∂ψ

)
. (5.7)

Finally, putting Equation 5.7 into Equation 5.5, we get the following differential equation

for the electric potential:

∂σp
∂ψ

∂Φ

∂ψ
|∇ψ|2 + σpB

2 ∂

∂ψ

(
1

B2
|∇ψ|2∂Φ

∂ψ

)
= 0. (5.8)

Bounce Averaging

We solve for the electrostatic potentials in the equatorial plane. Averaging over field-lines is

required for this. To bounce average Equation 5.8 integrals of the type,

‖A‖ ≡
∫ 1

0

dχ

B2
A

must be computed. Applying bounce averaging to Equation 5.8, we get∫ 1

0

dχ

B2
(∇ · J) =

∂Φ

∂ψ

∫ 1

0

dχ

B2
|∇ψ|2∂σp

∂ψ
+
∫ 1

0
dχ

[
σp

∂

∂ψ

(
|∇ψ|2

B2

∂Φ

∂ψ

)]
= 0

=
∂Φ

∂ψ

[∫ 1

0

dχ

B2

(
|∇ψ|2∂σp

∂ψ

)
+
∫ 1

0
dχσp

(
∂

∂ψ

|∇ψ|2

B2

)]
(5.9)

+
∂2Φ

∂ψ2

∫ 1

0
dχσp

|∇ψ|2

B2
= 0
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All quantities must be put into flux coordinates to carry out these integrals. Transforming

the variable of integration to ξ = sin2 θ and using the following relations facilitates this task:

r =
Mξ

ψ
, χ =

ψ2

M

√
1− ξ

ξ4
,

dχ

dξ
=
ψ2

M

3ξ − 4

2ξ3
√

1− ξ
.

For example, B2 in flux coordinates is (4−3ξ)ψ6

M4ξ6
and |∇ψ|2 = (4−3ξ)ψ4

M2ξ3
.

The difficulty with this formulation thus far is that the partial derivatives in Equation 5.10

must be computed while keeping χ constant. In general this is a laborious task in the new

co-ordinate system. Although this can be done to reach an O.D.E. for the potential, we

can arrive at this same end in a more intuitive and less laborious manner by computing the

current required to rotate the plasma. We do this in the following section after discussing

the necessary assumptions. As for the partial derivatives, they can be done easily on the

equatorial plane, however, where there is no χ dependence, and we also show the result of

these calculations below.

Assumptions

Magnetic Field As mentioned in Section 3.1.3, the vacuum magnetic dipole field for

CTX provides an excellent approximation to the point dipole field calculated from the stan-

dard Green’s function for the poloidal flux. The vacuum field is used for calculating all

quantities, such as ωc, σp etc. This dramatically reduces computing time when performing

bounce integrals.

Pedersen Conductivity The Pedersen conductivity must also be approximated. When

the full form is kept, it requires prohibitive processing time to compute the necessary nu-

merical integrals. However, in the applicable regime of low collisionality, κj � 1, it reduces

to the following simplified form,

σp ≈ nMiνin/B
2, (5.10)

where νin = nnσ0vthi, σ0 is the neutral collision cross section, nn is the neutral density, and

vthi is the ion thermal velocity. Here, we’ve taken νi to be only due to ion-neutral collisions,

not including ion-ion collisions. This is a valid simplification for the low density plasmas

investigated in CTX.
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Density and Temperature Thus far we have ignored density and temperature pro-

files. To calculate the Pedersen conductivities - and the collision freqencies that they subsume

- knowledge of temperature and density profiles is required. Temperature, in general, is an

ill-known quantity in the highly non-Maxwellian CTX plasma. Thus, we simply impose a

constant ion temperature profile. Equatorial density profiles can be roughly estimated from

Figure 5.4. However, since Iisat is proportional to Te as well as n it is difficult to know for

certain the exact density profile, though it is certainly a power law steeper than 1/L4, the

marginally stable profile. We will ultimately choose n ∝ L−6 for these calculations because

it results in rigid E ×B rotation in this model. This will be explained in the next section.

As for the field line dependence, we adopt a model that has been used successfully in the

nonlinear particle code[44, 42]. We simply give a sinusoidal profile along the field line peaked

on the equator, giving, n(θ, r) ∼ no sin θ(Lo/L)n, where n ∼ 6.

A list of the CTX plasma and machine parameters used in making these calculations is

given in Table 5.1.

5.3.2 Constant Current Calculation

In this section the equilibrium potential problem is calculated from the requirement of con-

stant radial current. We return to Equation 5.5 and take the volume integral in flux co-

ordinates: ∫ ∫ ∫ dϕdχdψ

B2
∇ · J = −2π

∫ ∫
dχdψ

∂

∂ψ

(
σp|∇ψ|2

B2

∂Φ

∂ψ

)
= 0, (5.11)

where we’ve plugged in for the electric field, carried out the axisymmetric ϕ integral, and

used Equation 5.6. Carrying out the trivial integral in ψ gives us,

−2π
∫
dχ

{
σp|∇ψ|2

B2

∂Φ

∂ψ
|ψmax −

σp|∇ψ|2

B2

∂Φ

∂ψ
|ψmin

}
= 0, (5.12)

which is, in fact, the current, I|ψmax − I|ψmin
= 0. Thus, the current is defined as,

I = −2π
∂Φ

∂ψ

∫
dχ
σp|∇ψ|2

B2
= −2π

∂Φ

∂ψ
‖σp|∇ψ|2‖. (5.13)

It is convenient to introduce the field-line integrated Pedersen current,

Σp =
‖σp|∇ψ|2‖
‖|∇ψ|2‖

= ‖σp|∇ψ|2‖/4M, (5.14)
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Table 5.1: Key parameters used in the radial electric field calculation.

Dimension Meaning Typical Value

a Bias Filament Location 26 cm

b Chamber Wall Location 70 cm

L0 Hot Electron Location 27 cm

Ba Equatorial field strength 875 G

ψa Magnetic flux, Baa
2 6.4× 105 Maxwells

Ma Characteristic dipole magnetic moment, BaL
3
a 1.7× 107 G · cm3

N0 Plasma density 3.0× 109 cm−3

ne Electron density 5.0× 109 cm−3

Te Electron Temperature 50 eV

Ti Ion Temperature 10 eV

vte Electron Thermal Velocity 3.0× 108 cm/s

vti Ion Thermal Velocity 2.2× 106 cm/s

νe0 Electron Collision Frequency at L0 4.4× 103 Hz

νi0 Ion Collision Frequency at L0 4.6× 101 Hz

ωce0 Electron Cyclotron Frequency at L0 1.54× 1010 Hz

ωci0 Ion Cyclotron Frequency at L0 8.4× 106 Hz

σ0 Neutral Cross Section 5× 10−15 cm2

σe0 Electron Conductivity at L0 3.2× 102 Ω · cm−1

σi0 Ion Conductivity at L0 1.6× 101 Ω · cm−1
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so that Equation 5.13 becomes,

I = 8πMΩΣp, (5.15)

where we’ve also noted that ∂ψΦ = −Ω, the E × B frequency. We use this equation to

put constraints on the electrostatic potential, and thereby calculate the current, which can

be compared to measured values to confirm our model of the transport that generates the

electric field.

For completeness, we write down the form of Σp that we use for numerical calculations:

Σp =
1

4M

∫ 1

0
dχ
|∇ψ|2

B2
σp =

1

4

∫ 1

0
dξ

(
3ξ − 4√

1− ξ

)
σp(ξ, ψ) (5.16)

=
νinε0

4

∫ 1

0
dξ

(
3ξ − 4√

1− ξ

)
ω2
pi

ω2
ci

,

since σp = νinε0(ω
2
pi/ω

2
ci), where ω2

pi is the ion plasma frequency and ω2
ci is the ion cyclotron

frequency.

Results

The observations, including the experimental floating potential scan, Figure 5.2, and the rigid

rotation of the instability, are fit by a potential linear in ψ. With the boundary conditions,

Φ(a) = −500 V and Φ(b) = 0 V we obtain the radial potentials and electric fields shown in

Figures 5.17(a) and (b). With this induced radial field and the CTX magnetic dipole field,

an azimuthal E × B flow will result. The rotation velocities and frequencies are shown in

Figures 5.17(c) and (d). These calculated profiles are in blue. Also plotted in black are the

profiles calculated from the experimental results shown in Figure 5.3.

The actual current calculated from Equation 5.15 is very close to the measured current

from the bias power supply, ∼ 2 mA. This is based on the observed (and calculated) E×B

frequency of ∼ 20− 25 kHz and a density profile of n(ψ) ∝ ψ6. The latter can be obtained

from Equation 5.15 by noting that both I and Ω are independent of ψ, so that Σp, and thus σp,

must also be independent of ψ. Since σp = n(ψ)Miνin/B
2, where νin = nnσ0vthi is thought

to be roughly independent of ψ in the CTX device, we must have n(ψ)/B2 ∼ constant, or

n(ψ) ∼ ψ6 for σp (and therefore Ω) to be constant. This is a realistic density profile and is

unstable to interchanges.
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Using values from Table 5.1, we compute a current of I ∼ 0.8 mA, about half the

measured value. This calculation also serves as a check on density measurements through

other methods, such as the Langmuir probe characteristic which is fraught with difficulty

in a plasma with energetic electrons. By the same token, it gives us a better handle on the

density profile than the profile of Iisat given in Figure 5.4, since Iisat is also proportional

to Te, not just n. In fact, it is valid to turn the question around and ask what density is

required to obtain the observed emission current. This is, in effect, using the entire plasma

as a probe.

To summarize, clearly the equilibrium model is close to what is seen experimentally, lend-

ing credibility to its underlying physical assumptions, including the argument that classical

cross-field transport from ion-neutral collisions creates the radial current leading to the elec-

tric field. The fact that both the predicted (blue) and extrapolated (black) E×B frequencies

are close to the observed frequency of the m = 1 rotational mode of ∼ 20−25 kHz also gives

confidence to the model.

5.4 Inclusion of Non-axisymmetric Effects

We now add the contributions due to non-axisymmetric terms that can arise in Ohm’s law,

Equation 5.1, due to either azimuthal dependencies of the fields or contributions from the Hall

conductivity. Since the CTX biasing system is capable of inducing up to m = 3 potentials

at the inner plasma boundary, this is a worthwhile problem to address, and introduces some

interesting physics. These experiments have not been carried out to date, but the relevant

theory to compare to experiment is a relatively simple extension of the results from the

previous Section.

The field-aligned current is again ignored but we now allow the electrostatic potential

to have azimuthal depencence, E⊥(ψ, ϕ) = −∂Φ
∂ψ
∇ψ − ∂Φ

∂ϕ
∇ϕ, and we no longer omit the

contribution from the Hall term. Thus we now have in analogy to Equation 5.5,

∇ · J = (∇σp) · E⊥ + σp(∇ · E⊥)− (∇σH) · (E⊥ × b̂)− σH∇ · (E⊥ × b̂) = 0. (5.17)

Since σp = σp(ψ), the first term has no new azimuthal contribution. The second term
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Figure 5.17: (a) The potential deduced from Equation 5.15 (in blue), (b) the resulting electric

field, (c) the azimuthal E×B velocity, and (d) the frequency of rotation. The red dots are

data points of floating potential, as shown in Figure 5.2, and the black lines are the fit to

these points along with the electric field, flow velocity and rotation frequency calculated

from this fit and the CTX dipole field.
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does, however, and in analogy to Equation 5.7 we have for the electric field

∇ · E⊥ = −B2 ∂

∂ψ

(
1

B2
|∇ψ|2∂Φ

∂ψ

)
−B2 ∂

∂ϕ

(
1

B2
|∇ϕ|2∂Φ

∂ϕ

)
(5.18)

where the second term is the new term. After some algebra, we have from just the Pedersen

contribution to Equation 5.17:

(∇σp)·E⊥+σp(∇·E⊥) =
∂2Φ

∂ψ2
σp|∇ψ|2+

∂Φ

∂ψ

[
∂σp
∂ψ

|∇ψ|2 + σpB
2 ∂

∂ψ

(
|∇ψ|2

B2

)]
+
∂2Φ

∂ϕ2
σp

B2

|∇ψ|2
,

(5.19)

where the last term here is the new term with azimuthal dependence.

Now we must look at the Hall terms. To facilitate this task, we must calculate E⊥ × b̂

and it’s divergence. With E⊥ as given above in flux coordinates and b̂ = (∇ϕ×∇ψ)/B, we

get,

E⊥ × b̂ = −∂Φ

∂ψ

|∇ψ|2

B2
∇ϕ+

∂Φ

∂ϕ

|∇ϕ|2

B2
∇ψ. (5.20)

After some more work and finding a cancellation of two terms, we find for the divergence,

∇ · (E⊥ × b̂) =
∂Φ

∂ϕ

[
|∇ϕ|2B ∂

∂ψ

(
|∇ϕ|2

B2

)
− ∂B

∂ψ

]
. (5.21)

Finally, putting Equations 5.20 and 5.21 with Equation 5.19 into Equation 5.17, we get

the following differential equation for the electric potential:

∂2Φ

∂ψ2
σp|∇ψ|2 +

∂Φ

∂ψ

[
∂σp
∂ψ

|∇ψ|2 + σpB
2 ∂

∂ψ

(
|∇ψ|2

B2

)]
+
∂2Φ

∂ϕ2
σp

B2

|∇ψ|2

+
∂Φ

∂ϕ

[
σH

B3

|∇ψ|2
∂

∂ψ

(
|∇ϕ|2

B2

)
− σH

∂B

∂ψ
+
∂σH
∂ψ

B

]
= 0. (5.22)

This entire equation must now be bounce averaged as before.

Bounce Averaging

We simply write down the bounce integrals for completeness. There are four new terms to

bounce average. They are,
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∫ 1

0
dχ

σp
|∇ψ|2

= c4/ψ
4

∫ 1

0
dχ

σHB

|∇ψ|2
∂

∂ψ

(
|∇ϕ|2

B2

)
= c6/ψ

3

∫ 1

0
dχ
σH
B2

∂B

∂ψ
= c7/ψ

3

∫ 1

0
dχ

1

B

∂σH
∂ψ

= c8/ψ
3,

where the c’s are constants with subscripts refering (roughly) to their place in Equation 5.22.

Electrostatic Potential

As before we use the ideal magnetic dipole field for bounce averaging and in all definitions

of physical quantities. Both Pedersen and Hall conductivities are approximated in their

low collisional limit (κj � 1), dominated by ion-neutral events, which is an excellent ap-

proximation for the CTX parameters used. Once again the density is assumed to be of the

form n(θ, r) ∼ no sin θ(Lo/L)n in spherical coordinates, and a constant temperature profile

is taken.

Finally, we assume the potential to be of the form, Φ(ψ, ϕ) = <{eimϕΦ∗(ψ)}, where

Φ∗(ψ) is the potential which satisfies Equation 5.22, which now takes the simpler form,

c1
∂2Φ∗

∂ψ2
+
c2
ψ

∂Φ∗

∂ψ
+ Φ∗

[
im

c3
ψ
−m2 c4

ψ2

]
= 0, (5.23)

where m is the azimuthal mode number and c3 = c6 − c7 + c8.

We see from Eqn 5.22 that the addition of the Hall conductivity has coupled the radial

and azimuthal dynamics. We uncouple them with the above separation of variables at the

cost of introducing complex terms to the eigenvalue equation for Φ∗. All terms containing

σH are contained in the complex c3 term, which we will variously turn on and off to gain

insight into the Hall dynamics.
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Figure 5.18: The real (reds) and imaginary (blues) solutions to Equation 5.23 for the elec-

trostatic potential.

5.4.1 Results from Non-axisymmetric Terms

Electrostatic Potential

Once again, we compute the bounce integrals and Equation 5.23 with Mathematica. The

latter is done with the three cases, m = 1, 2 and 3. These azimuthal mode numbers are

examined since the biasing tungsten mesh system on CTX is segmented into 6 separate

azimuthal regions, which is therefore capable of exciting up to m = 3 modes in the plasma

by imposing an inner boundary condition on the potential like Φ(a) cos(mϕ). We impose

Φ(a) = −300 V and Φ(b) = 0 V, similar to experimental conditions.

The electrostatic potential solved from the full form of Equation 5.23 is shown in Figure

5.18. (Note that after solving for the potential in flux co-ordinates, we transform back into

cylindrical coordinates). Both imaginary (blues) and real (reds) parts of the potential are

shown as a function of equatorial distance. The darker shades represent higher m numbers.

The real parts are the solutions that are obtained when the complex σH terms are dropped

from Equation 5.23 (ie. c3 = 0). These solutions steepen with increasing m number. The

m = 1 solution nearly overlaps that of the m = 0. The imaginary solutions are purely due

to the Hall contribution and are strongly localized toward the core.
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Figure 5.19: Radial (red), azimuthal (blue) and axial (green) E×B velocities for m = 1 as

a function of equatorial distance.

E×B Flows, σH = 0.

Next, we solve for the E×B flows excited by the induced electrostatic potential. Previously

we simply had azimuthal flows since our electric field was purely radial. Presently, we have

both radial and azimuthal electric fields so that there will be E ×B flows in all of the r, ϕ

and z directions, setting up convection patterns.

A representative example of the three components of uE×B is shown for m = 1 in Figure

5.19. The Hall terms in this case are set to zero to begin with. The flows are plotted as a

function of equatorial distance, arbitrarily choosing z = 40 cm and ϕ = π/6.

To see the dependence on m number of these flows, Figure 5.20 shows the components

of uE×B for all three m numbers. Again, higher m numbers are displayed in darker shades.

The effect on the azimuthal structure is marked: the velocity profiles increase and steepen

dramatically with m number for the radial and axial flows, and somewhat less so in the

azimuthal direction.

E×B Flows, σH 6= 0.

Now the effect of the Hall terms is added. In the next three plots we compare the flows for

each m number with and without the Hall contribution. The lighter shades correspond to

those including the Hall conductivity effects.

Clearly, the Hall terms cause a decrease in the velocties. This effect becomes more marked

with increasing m number. This can be seen especially clearly in the azimuthal component
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of equatorial distance with and without Hall contributions. The lighter shades correspond

to those including the Hall terms. (a) m = 1; (b) m = 2; and (c) m = 3.
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Figure 5.22: Azimuthal component of the E×B flow, uϕ, for m = 1, 2 and 3. Darker shades

correspond to higher m numbers.

of the E×B flow, uϕ,which actually reverses direction near the inner boundary due to Hall

term effects. This is displayed in Figure 5.22.

Finally, to get an idea of the actual physical flows in space, we examine vector plots of the

direction of radial and azimuthal flows in the equatorial plane. The following plots compare

flows with and without the Hall terms for m = 1 and 2. We also show a vectorplot for the

m = 3 case in Figure 5.24, but only with the Hall terms since the comparisons at this point

get rather complicated.

In both m = 1 and 2 cases, the effect of the Hall terms is to segment the azimuthal flow

into convection zones. For the σH = 0 cases, the flows are still restricted to one azimuthal

direction, despite regions of purely radial flow. However, in the σH 6= 0 cases, the direction

of the azimuthal flow actually changes, as was seen in Figure 5.22; there are two zones in the

m = 1 case, four in the m = 2 case and six in the m = 3 case. These changes in direction can

be seen clearly along the outer boundary (r ∼ 0.7m) where the flows are purely azimuthal.

Experimental study of these effects is possible in CTX using the 96 point gridded energy

analyzer array discussed in Section 3.2.2.

5.5 Summary

In summary, a low frequency global flute mode is observed upon application of the external

bias and rapid E×B rotation of the plasma. We identify this mode as the centrifugally driven
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Figure 5.23: Vectorplot of radial and azimuthal flows in the equatorial plane for m = 1 and

2. (a) m = 1 without Hall terms; (b) m = 1 with Hall terms; (c) m = 2 without Hall terms;

(d) m = 2 with Hall terms.
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Figure 5.24: Vectorplot of radial and azimuthal flows in the equatorial plane for m = 3 with

the Hall terms.

interchange instability. A multi-probe correlation analysis was performed on the mode, giving

the global mode structure of the instability. The mode is dominated by low m numbers with

a time independent mode structure, even as the frequency of the mode may be increasing due

to the increasing bias. All these characteristics are reproduced by a self consistent nonlinear

simulation with appropriate input values corresponding to plasma rotation frequency, ion

density profile, hot electron fraction and electrostatic potential boundary conditions. In

addition, some numerical damping of short wavelength modes is necessary.

The long-time nonlinearly saturated phase of the simulated instabilities tends to anm = 1

state which appears to be consistent with the experimentally observed modes, which are

themselves in a saturated state. It is not clear that the linear state is ever experimentally

observed.

Equilibrium calculations of the radial electric field are based on a model depending on

ion neutral collisions characterized by the Pedersen conductivity, σp. The model calculates

electric field values similar to what are seen experimentally and, accordingly, similar E×B

rotation frequencies.

Non-axisymmetric effects are studied as well in Section 5.4 and show examples of driven
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plasma convection. These results could be the topic of future experimental studies, since the

tungsten mesh biasing array has the capability of application of up to an m = 3 potential on

the inner boundary of the plasma. Furthermore, synchronous application of these potentials

is possible.



Chapter 6

Interchange Instability Dispersion

Relations

We use two methods for finding the dispersion relation for interchange instabilities driven by

centrifugal forces. The first method is a MHD normal mode analysis, following Ferriere et

al [14], while the second is a nonlinear two fluid method, after Mauel [44]. Both derivations

are in dipole flux co-ordinates, (ϕ, ψ, χ). The same two-fluid analysis is then used to find the

dispersion relation of the Hot Electron Interchange instability. Finally, the two drives are

combined into a single dispersion relation for general interchanges caused by both curvature

and rotational drives. Results from these calculations are used to interpret the experimental

observations and simulation comparisons.

We find that the purely rotational mode has high m number modes being the most

unstable, contrary to experimental observation. Addition of hot electron resonant effects,

however, which add a real frequency to the modes, stabilizes higher m modes, and is a more

realistic model of the experiment. This theory also explains the observation of a dominant

m = 2 regime for the rotational mode when the magnetic field was dropped to 70% of its

usual value, which results in a higher rotational instability drive and a lower HEI drive.

99
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6.1 Rotational Mode - MHD Approach

We assume a one dimensional model where all background parameters are constant along

fieldlines. That is,

c = cψêψ (6.1)

geff = gψêψ (6.2)

Ω · ∇ψ = 0 (6.3)

where c is the magnetic curvature vector, geff is the effective gravity, which contains con-

tributions due to normal gravity as well as the centrifugal force, −Ω × (Ω × R), Ω is the

rotation frequency, and êψ = ∇ψ/|∇ψ|. We will also assume zero pressure, so as to ignore

pressure driven interchange drives. Finally, we look only for interchange modes, thus we

force k‖ = 0.

6.1.1 Governing Equations

The basic MHD equations employed are the momentum equation,

ρ
dv

dt
= −∇PT +

1

4π
B · ∇B + ρgeff − 2ρΩ× v, (6.4)

where the last two terms are due to effective gravity and the Coriolis force, and PT refers to

the total pressure, PT = P + PM ; the continuity equation,

dρ

dt
= −ρ∇ · v, (6.5)

the frozen-field equation,
∂B

∂t
= ∇× (v)×B, (6.6)

and the adiabatic equation of state,

d

dt

(
P

ργ

)
= 0, (6.7)

where γ = 5/3 is the adiabatic index, ρ is density, and v is the plasma velocity.
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6.1.2 Dispersion Relation

After assuming wave-like solutions to these equations composed of time-independent equi-

librium parts and time-dependent perturbations varying as exp(−ıωt), a local dispersion

relation can be found [14]. Spatial dependence of the perturbations are assumed to have the

form exp ı(mϕ+ kψψ + k‖χ). We just quote the result here and write down the k‖ = 0 root

of the dispersion relation,

ω2 =
m2

k2
⊥
ω2

0 +
(k⊥ · 2Ω)2

k2
⊥

, (6.8)

where we’ve defined the magnetic Rayleigh-Taylor frequency, ω0,

ω2
0 = gψ

[
1

ρ0

∂ρ0

∂ψ
|∇ψ| − 1

Pγ0

∂PT0

∂ψ
|∇ψ| − V 2

A

c2s + V 2
A

cψ

]
(6.9)

+ 2V 2
Acψ

[
1

B0

∂B0

∂ψ
|∇ψ| − 1

Pγ0

∂PT0

∂ψ
|∇ψ|+ c2s

c2s + V 2
A

cψ

]
,

where pγ0 = γP0 +2PM0, cs is the ion sound speed, VA is the Alfven speed, and the subscript

0 designates equilibrium quantities.

By using the equilibrium condition obtained from the momentum equation,

− 1

ρ0

∂PT0

∂ψ
|∇ψ|+ V 2

Acψ = 0, (6.10)

and enforcing P0 = 0, the Rayleigh-Taylor frequency reduces to

ω2
0 = gψ

[
1

ρ0

∂ρ0

∂ψ
|∇ψ| − gψ

V 2
A

]
(6.11)

and the interchange dispersion relation similarly simplifies to

ω2 = gψ

(
m2

k2
ψ +m2

)[
s−1|∇ψ| − gψ

V 2
A

]
, (6.12)

where we’ve defined s−1 = 1
ρ0

∂ρ0
∂ψ

as the dimensionless background density scale-length.

6.1.3 Instability Criterion

For instability we must have ω2 < 0. Thus stability depends on the radial density profile and

the sign of gψ. In other words gψs
−1 < 0 for instability. The second term in Equation 6.12
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is usually small since VA is usually large, and we will ignore it here. Recalling that gψ =

g − Ω × (Ω ×R) and that gravity is negligible in any smallscale experiment, the stability

criterion becomes

−Ω2R

(
m2

k2
ψ +m2

)
s−1|∇ψ| < 0, (6.13)

or just
∂ρ0

∂ψ
> 0. (6.14)

Since ψ = M sin2 θ/L, a L dependence of ρ ∼ L−4 will give ∂ρ0
∂ψ

= 0, the marginally

unstable case. Thus a steeper radial profile than this is required for instability.

6.2 Rotational Mode - Two Fluid Approach

With this approach we model the cold electron and cold ion populations separately as flu-

ids. As before, we ignore the thermalized electron population so as to drop contributions

from pressure driven interchanges. Similarly, we continue to assume that the background

parameters, such as density and potential, are functions of ψ only.

The electostatic potential is modeled as having an equilibrium time-independent part,

Φ0(ψ), corresponding to the external filament bias applied experimentally, as well as flute-like

electrostatic modes with k‖ ∼ 0,

Φ(ψ, ϕ, t) = Φ0(ψ) + Φ̃(ψ) exp ı(mϕ− ωt). (6.15)

The perturbed potential also has radial dependence corresponding to the experimentally

observed global mode structure. The resulting electric field is

Ẽ = −∇Φ = −∂Φ0

∂ψ
∇ψ − ∂Φ̃

∂ψ
∇ψ − ∂Φ̃

∂ϕ
∇ϕ. (6.16)
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6.2.1 Cold Electron Response

We model the cold electrons as being advected by the E×B drift, which consists of contri-

butions from the externally applied DC electric field as well as a perturbative term,

uE =
E×B

B2
= −∂ψ(Φ0 + Φ̃)

∇ϕ
|∇ϕ|2

+ ∂ϕΦ̃
∇ψ
|∇ψ|2

. (6.17)

The perturbed electron density is obtained from the continuity Equation

ṅe +∇ · (neuE) = 0. (6.18)

Field-line averaging Equation 6.18 gives

Ṅe +
∂

∂ϕ
(Ne‖∇ϕ · uE‖) +

∂

∂ψ
(Ne‖∇ψ · uE‖) = 0, (6.19)

where Ne =
∫
dχ ne

B2 . Now substituting in Equation 6.17, we have

Ṅe +
∂

∂ϕ

(
Ne

∥∥∥∥∥−∂Φ0

∂ψ
− ∂Φ̃

∂ψ

∥∥∥∥∥
)

+
∂

∂ψ

(
Ne

∥∥∥∥∥∂Φ̃

∂ϕ

∥∥∥∥∥
)

= 0. (6.20)

We identify the gradient of the background potential with the induced E × B frequency,

∂ψΦ0 ≡ −Ω. In addition, since both Φ0 and Φ̃ don’t have any field line dependence, they

come out of the integrals, which simply give unity, leaving,

Ṅe +
∂

∂ϕ

(
Ne

(
Ω− ∂Φ̃

∂ψ

))
+

∂

∂ψ

(
Ne
∂Φ̃

∂ϕ

)
= 0. (6.21)

6.2.2 Cold Ion Response

The ion response is complicated by the larger ion mass which demands that we allow the

ions to be advected by the E × B drift as well as the ion polarization drift, which is given

by,

udi =
1

ωciB

dẼ

dt
= − 1

ωciB

d

dt
∇Φ̃

= − 1

ωciB

d

dt

(
∂Φ̃

∂ψ
∇ψ +

∂Φ̃

∂ϕ
∇ϕ

)
,
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where

d

dt
=

∂

∂t
+ uE · ∇

=
∂

∂t
− ∂Φ0

∂ψ

∂

∂ϕ

=
∂

∂t
+ Ω

∂

∂ϕ
,

where ωci is the ion cyclotron frequency. Since |Φ0| � |Φ̃| in the other E × B terms (see

Equation 6.17), they don’t contribute to the advection term.

However, in addition we must also allow the ions to be advected by the centrifugal drift

induced by the externally imposed bulk E×B rotation of the plasma. The centifugal force

is given in cylindrical co-ordinates by

Fc(R,ϕ, z) = MiΩ
2R, (6.22)

where Mi is the ion mass.

We can calculate the centrifugal drift, uc, in spherical co-ordinates easily and then trans-

form it into flux co-ordinates. Using the dipole magnetic field in spherical co-ordinates,

B(r, θ, ϕ) = M(−2 cos θ/r3,− sin θ/r3, 0), (6.23)

where M is the dipole magnetic moment, and rewriting the centrifugal force in spherical

co-ordinates,

Fc(r, θ, ϕ) = MiΩ
2r sin θ{sin θ, cos θ, 0}, (6.24)

we then calculate the drift as,

uc =
1

q

Fc ×B

B2
=
MiM

qB2

sin θ

r2
(2− 3 sin2 θ)Ω2ϕ̂. (6.25)

We also write down the expression for the centrifugal drift in flux co-ordinates:

uc(ψ, ξ) =
Mi

qB2M

ψ2(2− 3ξ)

ξ1/2
Ω2`ϕ∇ϕ =

Ω2

ωciB
ψ(2− 3ξ)ξ∇ϕ = uc∇ϕ, (6.26)

where we use ξ = sin2 θ instead of χ in anticipation of the bounce integrations that will be

necessary, and where `ϕ = r = Mξ3/2ψ is scale factor in transforming ϕ̂ to ∇ϕ.
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Finally, it is also of interest to include drifts due to the gravitational force in magne-

tospheric environments. Of course, it is less important in the laboratory setting, but we

calculate it and include it nonetheless:

Fg(R, θ, ϕ) = −GMimr

r3
= −gMi

(
r0
r

)2

r̂, (6.27)

where m is presumably a planetary mass, G is the universal gravitational constant and g is

local magnitude of gravity. The drift is

ug =
1

q

Fg ×B

B2
=
gMiM

qB2

(
r0
r

)2 sin θ

r3
ϕ̂. (6.28)

In flux co-ordinates we have

ug(ψ, ξ) =
g

ωciBM

ψ4

ξψ2
0

∇ϕ = ug∇ϕ. (6.29)

We can now solve the field-line averaged ion continuity equation for Ni:

Ṅi +
∂

∂ϕ
(Ni‖∇ϕ · vi‖) +

∂

∂ψ
(Ni‖∇ψ · vi‖) = 0, (6.30)

with the ion velocity given by

vi = uE + udi + uc + ug, (6.31)

where the first term is the E×B drift, the second is the ion polarization drift, third is the ion

centrifugal drift and last is the gravity drift. To write down the analogy with Equation 6.20

we first calculate the following terms,

∇ϕ · ui = −∂Φ0

∂ψ
− ∂Φ̃

∂ψ
− 1

ωciB

d

dt

(
∂Φ̃

∂ϕ

)
|∇ϕ|2 + (uc + ug)|∇ϕ|2 (6.32)

∇ψ · ui =
∂Φ̃

∂ϕ
− 1

ωciB

d

dt

(
∂Φ̃

∂ψ

)
|∇ψ|2, (6.33)

where, for the ∇ϕ component, the first two terms are the background and perturbed E×B

drifts respectively, the third is the ion polarization drift and the fourth is the centrifugal and

gravity drifts; for the ∇ψ component, we have just the perturbed E × B drift and the ion

polarization drift. Equation 6.30 now becomes,

Ṅi +
∂

∂ϕ

[
Ni

(
−∂Φ0

∂ψ
− ∂Φ̃

∂ψ
−
∥∥∥∥∥ |∇ϕ|2ωciB

∥∥∥∥∥ ddt
(
∂Φ̃

∂ϕ

)
+
∥∥∥(uc + ug)|∇ϕ|2

∥∥∥)] (6.34)

+
∂

∂ψ

[
Ni

(
∂Φ̃

∂ϕ
−
∥∥∥∥∥ |∇ψ|2ωciB

∥∥∥∥∥ ddt
(
∂Φ̃

∂ψ

))]
= 0.
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Each of these terms must now be field-line averaged. These integrations are performed

numerically. The three E × B terms have no χ dependence and therefore come out of the

integrals. Since these averages are density weighted, some assumption regarding the density

profile must be taken. Here we assume a broad field line profile, n ∼
√
ξ = sin θ, as in the

equilibrium calculations in the previous Chapter. The remaining terms are included here:

‖∇ϕ · udi‖ = −
∥∥∥∥∥ |∇ϕ|2ωciB

∥∥∥∥∥ ddt
(
∂Φ̃

∂ϕ

)
= −0.66

M2B0

ωci0ψ4

d

dt

(
∂Φ̃

∂ϕ

)
(6.35)

‖∇ψ · udi‖ = −
∥∥∥∥∥ |∇ψ|2ωciB

∥∥∥∥∥ ddt
(
∂Φ̃

∂ψ

)
= −0.77

M2B0

ωci0ψ2

d

dt

(
∂Φ̃

∂ψ

)
(6.36)

‖∇ϕ · uc‖ =
B0

ωci0

∥∥∥∥∥(2− 3ξ)ξ|∇ϕ|2

B2

∥∥∥∥∥Ω2ψ = −0.54
Ω2

ωci0

(
ψ0

ψ

)3

(6.37)

‖∇ϕ · ug‖ =
gB0

ωci0M

∥∥∥∥∥ |∇ϕ|2ξB2

∥∥∥∥∥
(
ψ4

ψ2
0

)
= 0.71

gL2
0B0

ωci0M0

= 0.71
Ω2
g

ωcio
, (6.38)

where ωci0 is the ion cyclotron frequency at B0, and we’ve defined the gravitational frequency,

Ω2
g = gL2

0B0/M0 = g/L0.

The entire ion continuity equation can now be written down:

Ṅi +
∂

∂ϕ

Ni

Ω− ∂Φ̃

∂ψ
− 0.66

M2B0

ωci0ψ4

d

dt

(
∂Φ̃

∂ϕ

)
− 0.54

Ω2

ωci0

(
ψ0

ψ

)3

+ 0.71
Ω2
g

ωci0

(6.39)

+
∂

∂ψ

[
Ni

(
∂Φ̃

∂ϕ
− 0.77

M2B0

ωci0ψ2

d

dt

(
∂Φ̃

∂ψ

))]
= 0.

6.2.3 Linear Dispersion Relation

The linear dispersion relation for low-frequency flute-like modes driven by rotation in a

dipole plasma can be derived from Equations 6.21 and 6.39 and the Poisson equation or

the quasineutrality approximation. To solve for the perturbed ion and electron densities we

linearize the electostatic potential fluctuations as follows [44]:

Φ̃(ψ, ϕ, t) ≈ Φm(ψ∗) exp(mϕ− ωt)

1− (ψ − ψ∗

∆ψ

)2

+ · · ·

 , (6.40)

where m is the azimuthal mode number and ψ∗ = B∗L2 is the flux surface of peak mode

amplitude. That is, we take ∂Φ/∂ψ|ψ∗ = 0. ∆ψ is the radial mode width, defined as

∆ψ ≡ 2ψ∗/kLL.
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Beginning with the electron density, we return to Equation 6.21 and linearize:

˙̃N e =
∂Ñe

∂ϕ

(
∂Φ̃

∂ψ
− Ω

)
+Ne0

∂

∂ϕ

(
∂Φ̃

∂ψ
− Ω

)
− ∂Ne0

∂ψ

∂Φ̃

∂ϕ
−Ne0

∂2Φ̃

∂ϕ∂ψ
. (6.41)

Any term involving ∂Φ̃/∂ψ is set to zero, and we are left with

−ıωÑe = −ımÑeΩ− ımΦm
∂Ne0

∂ψ
. (6.42)

Solving for the electron density, we have

Ñe =
1

ω −mΩ
mΦm

∂Ne0

∂ψ
. (6.43)

Similarly, we now solve for the perturbed ion density from Equation 6.39. The linearized

ion continuity equation is then

−ıωÑi + ımÑiΩ −0.66ım2(ω −mΩ)Ni0
M2B0

ωci0ψ4
Φm − ımÑi

0.54
Ω2

ωci0

(
ψ0

ψ

)3

− 0.71
Ω2
g

ωci0


+ımΦm

∂Ne0

∂ψ
+ 0.77ı(ω −mΩ)Ni0

M2B0

ωci0ψ2

∂2Φ̃

∂ψ2
= 0. (6.44)

We define some shorthand for the gravity and centrifugal terms in Equation 6.44:

ωcf = 0.54
Ω2

ωci0

(
ψ0

ψ

)3

(6.45)

ωg = 0.71
Ω2
g

ωci0
. (6.46)

Gathering terms, we find

Ñi =
1

ω −mΩ +m(ωcf − ωg)

[
mΦm

∂Ni0

∂ψ
+ (ω −mΩ)Ni0

M2B0

ωci0ψ2

(
0.77

∂2Φ̃

∂ψ2
− 0.66

m2

ψ2
Φm

)]
.

(6.47)

From Equation 6.40 we have ∂2Φ̃/∂t∂ψ = −2(kLL/2ψ
∗)2Φm. Again, to facilitate algebra

we introduce two more definitions for terms in Equation 6.47:

N = m
∂Ni0

∂ψ

P =
M2B0

ωci0ψ∗2
Ni0

1.54

(
kLL

2ψ∗

)2

+ 0.66
m2

ψ∗2

 .
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These terms represent density gradient and ion polarization forces. The perturbed ion density

is now

Ñi =
1

ω −mΩ +m(ωcf − ωg)
[N − (ω −mΩ)P ] Φm. (6.48)

Similarly, we can also write the perturbed electron density in this notation,

Ñe =
1

ω −mΩ
NΦm. (6.49)

6.2.4 Quasi-Neutrality

To a first approximation, we can set Ñi ∼ Ñe, which gives us,

1

ω −mΩ +m(ωcf − ωg)
[N − (ω −mΩ)P ] =

1

ω −mΩ
N , (6.50)

and

−(ω −mΩ)(ω −mΩ)P = m(ωcf − ωg)N . (6.51)

Moving into the E×B frame, ω′ = ω −mΩ, Equation 6.51 becomes

−ω′2P = m(ωcf − ωg)N . (6.52)

For instability, we require ω′2 < 0, or,

m(ωcf − ωg)N
P

> 0, (6.53)

or just N > 0 when the centrifugal drive is greater than the gravitational drive, which is

equivalent to ∂N0/∂ψ > 0, the expected MHD result. The condition ωcf = ωg defines a

stable flux surface, ψ3
s ≡ 0.68Ω2M2/gr2

0, which separates the spatial instability regions of

the rotational and gravitational interchange modes.

6.2.5 Poisson Equation

We can also plug in the perturbed densities into the Poisson equation and solve for ω, thereby

giving a dispersion relation. The field-line averaged Poisson equation in flux co-ordinates is

∇2Φ =
∂

∂ϕ

(
hϕ
∂Φ

∂ϕ

)
+

∂

∂ψ

(
hψ
∂Φ

∂ψ

)
= −4πe(Ñi − Ñe), (6.54)
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where two geometrical terms define the transformation of the Laplacian operator intro field-

line averaged flux co-ordinates:

hϕ ≡
∫ dχ

|∇ψ|2
= 2

M

ψ2
(6.55)

hψ =
∫ dχ

|∇ϕ|2
= 2M. (6.56)

Having assumed that ∂ψΦ0 = constant, Φ0 does not appear again on the left hand side

of the Poisson equation. Using Equations 6.48 and 6.49, we have

−2M

m2

ψ∗2
+ 4

(
kLL

2ψ∗

)2
Φm = −4πe

[
1

ω −mΩ +m(ωcf − ωg)
[N − (ω −mΩ)P ]− 1

ω −mΩ
N
]

Φm.

(6.57)

Canceling Φm’s, moving into the ω′ frame again, and rearranging,

(
m2 + (kLL)2

)
= −4πeψ∗2

2M

[
ω′2P +m(ωcf − ωg)N
ω′(ω′ +m(ωcf − ωg))

]
. (6.58)

To procede and get a more physical understanding of what each term represents, we look

at the first term on the right hand side of Equation 6.58 separately and plug back in for P :

4πeψ∗2

2M
P =

4πeψ∗2

2M
· M

2B0

ωci0ψ2
Ni0

[
0.77

(
2
kLL

2ψ∗

2
)

+ 0.66
m2

ψ∗2

]

=
ω2
pi

2ω2
ci0

(
MB2

0

ψ2

)
(0.39(kLL)2 + 0.66m2)

≈ 0.91
〈ω2

pi〉
2ω2

ci0

(0.39(kLL)2 + 0.66m2)

= 0.30m2
⊥
〈ω2

pi〉
ω2
ci0

,

where ω2
pi = 4πe2N0/Mi is the ion plasma frequency, and recalling 〈ωpi〉 = ωpiδV

−1(ψ) ≈
ωpi/(0.91M3/ψ4), and m2

⊥ = (0.60(kLL)2 +m2).

In most laboratory plasmas, the term 〈ω2
pi〉/ω2

ci0 � 1, which is a high density limit. In

CTX, 〈ω2
pi〉/ω2

ci0 ' 103 in fact, so that the polarization term is quite large. Physically, this

just means that the plasma responds rapidly to changing electric fields. Polarization drifts

are then stabilizing since they serve to eliminate the build-up of large electric fields which

cause charge separation, currents and growing modes.
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Now we look at the second term on the right hand side of Equation 6.58:

4πeψ∗2

2M
(ωcf − ωg)N =

4πeψ∗2

2M
·

0.54
Ω2

ωci0

(
ψ0

ψ

)3

− 0.71
Ω2
g

ωci0

 ·m∂N0

∂ψ

≈ m
〈ω2

pi〉
ω2
ci0

0.49Ω2

(
ψ0

ψ

)3

− 0.64Ω2
g

( ψ

N0

∂N0

∂ψ

)

= m
〈ω2

pi〉
ω2
ci0

Γ2
r,

where we’ve defined the rotational interchange instability drive,

Γ2
r ≡

0.49Ω2

(
ψ0

ψ

)3

− 0.64Ω2
g

( ψ

N0

∂N0

∂ψ

)
(6.59)

=

0.49Ω2

(
ψ0

ψ

)3

− 0.64Ω2
g

 s−1,

where s−1 is the dimensionless background density scale length.

We reintroduce these terms into Poisson’s equation, Equation 6.58, and solve for a sta-

bility criterion,

(
m2 + (kLL)2

)
=

−1

ω′(ω′ +m(ωcf − ωg))

[
m2
⊥ω

′2 〈ω
2
pi〉

ω2
ci0

+m2 〈ω
2
pi〉

ω2
ci0

Γ2
r

]
. (6.60)

Rearranging,

ω′2
[
m2
⊥
〈ω2

pi〉
ω2
ci0

+
(
m2 + (kLL)2

)]
+m

(
m2 + (kLL)2

)
(ωcf − ωg)ω

′ +m2 〈ω
2
pi〉

ω2
ci0

Γ2
r = 0, (6.61)

In the first term, (m2 + (kLL)2) can be dropped, since (m2 + (kLL)2) ≈ 1 and 〈ω2
pi〉/ω2

ci0 � 1.

For the same reason, the ω′ term is dropped, so that we have

ω′2 +
m2

m2
⊥

Γ2
r = 0, (6.62)

which again recovers the MHD limit, s−1 ∝ ∂N0/∂ψ > 0 for centrifugal drives and ∂N0/∂ψ <

0 for gravitational drives.

Furthermore, the rotational interchange mode has frequency ω = mΩ + ıγ, where the

growth rate is,

γ = ±

√√√√m2

m2
⊥

Γ2
r, (6.63)
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Figure 6.1: The growth rate of the rotationally driven interchange mode versus the rotational

drive.

ie., it is proportional to the background density scale length - as in the classical Rayleigh

Taylor instability - as well as the rotation frequency, as expected. Furthermore, we see that

high m modes as well as longest wavelength modes are most unstable. This can be seen

explicitly in Figure 6.1 In the E × B frame of reference, the modes are stationary, purely

exponentially growing modes, which is consistent with the observations that the modes

propagate in the E×B frame.

The fact that high m modes are most unstable is at odds with experiment. To more

closely approximate the experiment we add the dispersive effects of the drift-resonant hot

electrons, which add a small real frequency to the solutions.

6.3 Hot Electron Interchange Dispersion Relation

We may employ the same nonlinear two fluid approach to derive the dispersion relation for

the HEI instability. The method is identical concerning the fluid description of the cold ions

and electrons, however, for the hot electron population necessary to drive the pressure driven

HEI mode, a kinetic approach is required [44].
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6.3.1 Hot Electron Dynamics

The hot electrons are modeled as an anisotropic (p⊥ � p‖) equatorially trapped population

localized at the microwave cyclotron resonance location. The cold electrons, in contrast,

are more uniformly distributed. Thus the hot electrons form a disk within the colder back-

ground plasma. The guiding center Hamiltonian describes nonrelativistic energetic electrons

interacting with drift-resonant electrostatic waves:

H =
µ

e
B − Φ. (6.64)

Since the hot electrons are deeply trapped, we look only at dynamics in the equatorial plane,

setting J = 0. Thus the equations of motion are only two-dimensional, in the (ψ, ϕ) plane,

and are quite simple:

ϕ̇ =
∂H

∂ψ
=
µ

e

∂B

∂ψ
− ∂Φ

∂ψ
= ωd(µ)− ∂Φ

∂ψ
(6.65)

ψ̇ = −∂H
∂ϕ

=
∂Φ

∂ϕ
, (6.66)

where we’ve defined the magnetic precessional drift frequency for the hot electrons, ωd =

3µB/eψ.

To describe a distribution of electron energies confined to the equatorial plane, the Vlasov

equation is employed, with a distribution function, F (µ, ψ, ϕ, t),

dF

dt
+

∂

∂ϕ
(ϕ̇F ) +

∂

∂ψ
(ψ̇F ) = 0. (6.67)

The flux tube integrated electron number is just Ne =
∫
dµdJF . To make further progress

we assume that F is separable, defining α(ψ) to be the energetic electron fractional density.

Thus, the background distribution function is simply,

F0 = Ni0(ψ)[1− α(ψ)]δ(µ)δ(J) +Ni0(ψ)α(ψ)G(µ)δ(J), (6.68)

where G(µ) is the distribution of electron energies, given as

G(µ) =
µl−1ll

µl0Γ(l)
exp(−µl/µ0), (6.69)

where l is a positive integer. G(µ) becomes a delta function for l → ∞ and a gaussian at

l = 0. For any integer value of l,
∫
dµµG = µ0.
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Using the same linearization scheme as before, Equation 6.40, and noting that

F̃ =
m

ω −mωd
ΦmF0, (6.70)

we find the perturbed electron number density,

Ñe =
∫
dµdJF̃ =

m

ω
Φm

∂Ni0

∂ψ
+m2Φm

∂(Ni0α)

∂ψ

∫
dµ

ωdG(µ)

ω(ω −mωd)
. (6.71)

The first term on the right hand side is the same background density gradient term we

found for the cold electrons in Equation 6.43, except that it is in the ω′ frame. The second

term is the hot electron interchange drive term, exhibiting the drift-wave resonance in the

denominator.

6.3.2 Dispersion Relation

Again we solve Poisson’s equation, Equation 6.54, with the electron density number given

by Equation 6.71 and the ions given by

Ñi =
m

ω
Φm

∂Ni0

∂ψ
+ ωNi0

M2B0

ωci0ψ2

(
0.77

∂2Φ̃

∂ψ2
− 0.66

m2

ψ2
Φm

)
, (6.72)

which is identical to Equation 6.47 save the centrifugal and gravitational terms and is also

in the ω′ reference frame.

Solving Poisson’s equation, we find the following dispersion relation in the high density

limit 〈ω2
pi〉/ω2

ci0 � 1:

D(ω,m,m⊥) ≈ 1 + 1.5
m2

m2
⊥

ψ

N

∂(Ni0α)

∂ψ

∫
dµ

ωciωdG(µ)

ω(ω −mωd)
. (6.73)

To find the roots of this singular dispersion function, the usual Landau prescription for

wave-particle resonant interactions is employed. It is convenient to express D in terms of

exponential integrals. The dispersion relation for a mono-energetic electron distribution,

G(µ) = δ(µ− µ0), becomes,

D0(ω,m,m⊥) ≈ 1 +
m2

m2
⊥

Γ2
h

ω(ω −mωd0)
, (6.74)

where the hot electron interchange drive is defined as,

Γ2
h = 1.5ω∗ciωd0

ψ∗

N0

∂(Ni0α)

∂ψ
, (6.75)
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Figure 6.2: a) HEI frequency, b) HEI growth rate, and c) HEI growth rate in low drive

regime, where low m modes are seen to be more unstable.

and ωd0 is the drift frequency at B0. For the mono-energetic dispersion relation, instability

results when Γ2
h > m2

⊥ω
2
d0 with a real frequency given by mωd0/2. Low m number modes are

most unstable as well as broad radial modes, m2
⊥ � 1.

A distribution in electron energy extends the instability regime below the mono-energetic

stability limit. Plots of HEI instability real frequency and growth rate versus the HEI drive

are shown in Figure 6.2. In Figure 6.2(a) the real frequencies are plotted and it can be

seen that as Γh → ∞, ω → mωd0/2, the classical value. In (b) and (c) it is shown that for

high values of HEI drive, higher m modes become more unstable, while at lower drive it is

lower m numbers that are more unstable. It is this low drive regime, Γ2
h ≤ 1, in which the

CTX experiment operates, where low m modes are usually observed to be more unstable

than higher ones. However, in extremely energetic HEI bursts, higher m modes have been

observed to be most unstable.
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6.4 Combined Interchange Dispersion Relation

Having derived the dispersion properties of both the rotationally driven and the pressure

driven (HEI) interchange instabilities, it is a straight forward matter to combine the two

into a complete interchange description. The full interchange dispersion relationship, from

Equations 6.62 and 6.73, is given by,

Dtot(ω,m,m⊥) ≈ 1 +
m2

m2
⊥

[
Γ2
r

ω2
+

Γ2
h

ω

∫
dµ

G(µ)µ/µ0

(ω −mωd)

]
. (6.76)

This equation has three roots in genenal; a stable oscillatory root, an unstable root and a

decaying root.

In the case where both drives are present there must be some modification of the mode

structure since HEI modes have low m modes be unstable (when the drive is low, as in the

experiment) while rotational modes of higher m’s be more unstable at all values of Γ2
r. It is

natural to expect that for the properly chosen values of Γh and Γr, a low frequency mode

with nonzero rotational drive will result with low m numbers being most unstable. Indeed,

such is the case in the following plot, Figure 6.3, where the combined interchange growth rate

is shown versus HEI drive while the rotational drive is held constant at Γ2
r = 0.2. In the low

HEI drive regime that is plotted, low m modes do indeed become more unstable. However,

since as Γh → 0 higher m’s must become more unstable, in accordance with the rotational

dispersion relation, we see at even lower values of Γh that the growth rates for higher m’s

do again become more unstable. The m = 4 mode due to just HEI drive is also plotted and

shows that for low Γh where the HEI growth goes to zero, there is a finite growth rate for the

combined modes; this is the purely growing rotational mode. Thus, we can conclude that

the experimental observations exist within this range where neither the rotational nor HEI

drives are robustly dominant.

Of course, the observations are of a dynamical system near marginal stability in a non-

linearly saturated state, while this is simply a linear theory. The nonlinear simulation, for

example, exhibits a linear growth phase initially but always appears to nonlinearly saturate

to an m = 1 mode. So various dissipative effects not included in Equation 6.76 that can also

stabilize higher m modes may be important here.

Having said that, this theory offers a possible explanation for the two observed regimes
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Figure 6.3: The growth rate of the combined interchange mode versus the HEI drive, for

m = 1, 2, 4. m = 1 has the largest growth rate, but as Γh → 0 higher modes become more

unstable again. The solutions begin to break down in this singular limit. The black line is

just the HEI solution for m = 4 for the sake of comparison.

of the rotational mode. When the HEI drive is stronger relatively to the rotational drive,

dominantm = 1 potential structures are measured. If the HEI drive is reduced and rotational

drive increased by lowering the magnetic field which simultaneously reduces the population

of hot electrons and increases the E×B frequency, a dominant m = 2 structure is measured.

6.5 Summary

In this Chapter the linear dispersion relations for both rotationally driven and pressure driven

interchanges was derived using a two fluid method. It is found that finite temperature effects

are necessary to reproduce the experimental observations and numerical simulation results

of the rotationally driven instability, specifically the fact that low m number modes are most

unstable. The real frequency imparted to the solutions by the HEI drive allows polarization

effects to stabilize higher m modes preferentially. This offers an explanation for the key

observation of a dominant m = 2 mode when the rotational drive is increased by lowering

the magnetic field.

The agreement between experimental observation, numerical simulation and the linear

stability analysis leads us to identify the observed fluctuations as the rotationally driven

interchange instability.



Chapter 7

Conclusions

This thesis reports the first study of the global mode structures of interchange instabilities

observed in a laboratory magnetic dipole. Instabilities driven by pressure forces due to

an energetic, drift-resonant hot electron population as well as rotation driven interchanges

induced by E×B rotation are observed.

Low frequency, drift-resonant, electrostatic interchange instabilities are driven by a hot

electron population in the CTX device. The mode structure is measured using a multi-probe

cross-correlation analysis. These modes have a a complex time-varying frequency spectrum,

but are characterized by a relatively simple mode structure which is characterized by low m

numbers and broad radial structure. There is no structure along a field-line, consistent with

interchange physics. The form of the mode structure does not evolve significantly in time.

A self-consistent nonlinear numerical simulation reproduces many key aspects of the global

mode structure, including the broad radial mode structure of the lowest m number modes.

An external biasing array was constructed and mounted on the terrella of CTX in order

to induce radial electric fields to azimuthally E × B spin the plasma. Upon application of

the external bias, large electric fields, rapid plasma rotation and a flattening of the inner

plasma density are measured. We observe low frequency global flute modes and identify

them as the rotationally driven interchange instability. The mode is observed to propagate

in the E×B frame of reference. Global mode analyses indicate broad radial mode structures

and low order azimuthal modes, similar to those of the HEI, though there is a large nonzero

radial phase, kr 6= 0, distinct from HEI.

117
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The nonlinear simulation was adapted to observe the rotational mode by adding bulk

rigid rotation. It reproduces the observed instability after appropriate selection of ion and

electron profiles, as well as rotation frequencies. Since the nonlinear simulation evolves the

instability from an initial value, the time-evolution of the rotational mode could not be easily

compared to experiment. Nevertheless, when sufficient dissipation was added that damped

short wavelengths, the longer-wavelength m = 1 mode was dominant during both the linear

and the nonlinear stages of the simulated interchange event. We find the nonlinear mode

structure computed with the simulation to be comparable to the mode structure observed in

the experiment. For high rotation frequencies and steep density gradients, higher m modes

are seen to be more unstable, which is corroborated experimentally: when the magnetic field

is lowered so as to increase the E × B frequency an m = 2 potential structure becomes

dominant over the m = 1 structure. However, in the simulation higher m structures are

seen in the linear growth phase but usually relax back to an m = 1 mode as the instability

nonlinearly saturates. In contrast, the appearance of the m = 2 mode experimentally is

already in the saturated phase. This behavior has not yet been reproduced computationally,

and it suggests that the dissipative processes at work in the experiment may not be fully

understood or modeled correctly. With this exception, the numerical simulation is successful

at recovering many of the global characteristics of both the HEI and rotational instabilities.

The comparison of the linear and saturated states in the simulation and the experiment is

an area which merits further investigation. To that end, the observation of the linear stage

of the rotational mode would be critical.

The local linear dispersion analysis for interchange instabilities driven by both pressure

and rotation drives has also been solved. Short wavelengths are driven unstable by the purely

rotational drive, while the HEI drive can excite different wavelength modes depending on

the magnitude of the drive: for low drives, long wavelength modes are unstable. This is the

regime that is observed in all of the HEI and rotational mode studies. It is shown that finite

temperature effects add a real frequency to the modes which induce stabilizing polarization

currents which tend to stabilize high m modes. Thus, the full interchange dispersion relation

with both pressure and rotational drives captures important elements of how the observed

mode structure depends on the relative magnitude of the instability drives.

The work described in this thesis raises interesting questions for plasma science in two
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particular areas. First, the understanding of pressure driven interchanges is critical for the

prospect of achieving controlled fusion in a dipole confined plasma. It is clear that having

the capability of controlling the pressure profile is necessary to ensure interchange stability.

Secondly, do these experiments have any bearing on the magnetospheric interchange

instability? Many theories of these modes, as well as the data collected during the Galilean

encounter with the Io torus suggest that magnetospheric interchange instabilities might have

small wavelengths. Some estimates put the azimuthal extent of a magnetospheric interchange

perturbation at 15◦. However, the rotationally driven modes described here have longer

wavelength. In the Io torus the cold plasma density gradient is unstable while the energetic

pressure gradient is stable. In CTX both are unstable, so that both pressure and rotationally

driven modes are observed simultaneously. However, energetic particles do play important

roles in both situations, and it is possible that low m modes could exist in rapidly rotating

magnetospheres. If such large wavelength modes did exist, Galileo might not have observed

them, since the rotation speed of such a large structure would be much slower than the

transit time of the space-craft through it. It is also possible that the interchange of dense

plasma would be a much slower diffusive process if the mode structure were global, instead

of the rapid interchange of plasma confined by small flux-tubes. Other space-craft, including

the upcoming Cassini-Huygens mission to the Saturnian magnetosphere, may observe further

evidence of rotational interchange phenomena which may shed some light on some of these

issues.

Interesting opportunities remain for experimental research relating to the newly discov-

ered instability. The biasing array has capability of application of up to m = 3 potentials

on the inner boundary of the plasma. Driven plasma convection, non-axisymmertic circula-

tion, and (possibly) interchange stabilization by synchronous application of rotating biased

potentials can be studied in a controlled way in the laboratory with this new instrument.

Much of the theory for these experiments has already been presented in this thesis. Further-

more the polar imaging diagnostic has not been used to its full potential. The diagnostic

enables spatial and temporal imaging of the entire plasma (bounce-averaged) phase-space.

Time-dependent and global pictures of plasma and phase-space can be measured. Data from

the array can be used to generate high-speed, image-maps of field-line integrated particle

density during strong flows induced by intense low-frequency instabilities, and would add
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immensely to the detailed understanding of the complex instabilities discussed here.
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