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Abstract

Interchange Turbulence in a Dipole-Confined Plasma

Brian Adam Grierson

Turbulence in fluids and plasmas is a complex phenomena which couples structures at

different scales. Turbulent flows possess spectral cascades, as well as coherent structures.

When a flowing system can be considered as two-dimensional, the coupling through nonlin-

ear interaction generates large-scale structures which extend to the system size in an inverse

energy cascade. Plasmas confined by the dipole magnetic configuration in the Collisionless

Terrella Experiment (CTX) display two-dimensional, intense interchange-mode dynamics.

The plasma fluctuations are driven by gas injection and microwave heating, which produces

a plasma maintained near marginal stability. The turbulence in CTX is investigated with

respect to both local and global measurements. When viewed locally, the intense fluctuations

exhibit characteristics of fully developed turbulence, with a broad power-law spectrum and

finite correlation length. When viewed globally, the dynamics are found to be describable

by the chaotic temporal variation of a limited number of simple spatial modes. The fluc-

tuation energy spectrum is calculated to be consistent with the power-law trends for the

inverse energy cascade. Using analysis techniques for determining spectral energy flow,

it is found that three-wave interaction transfers energy to low wavenumbers, as predicted

for two-dimensional turbulence. A fully parallelized, self-consistent simulation including

a conserving source and sink is used to test the model equations for interchange mode

dynamics in a dipolar magnetic field. The model reproduces the driven fluctuations observed

in CTX, producing the rotating, radially broad, large-scale structures.
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Chapter 1

Introduction

“I am an old man now, and when I die and go to heaven there are two matters on which I

hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent

motion of fluids. And about the former I am rather optimistic.”

-Sir Horace Lamb, Address to the British Association for the Advancement of Science (1932)

The turbulent motion of fluids has long been a challenge to fully describe from first

principles. Turbulent flows are observable in everyday life; the flow of air over a car or an

airplane, the transition from laminar to turbulent flow from a rising smoke plume, intense

ocean currents, and most of the atmospheric circulation. Plasmas, which can also be de-

scribable by Navier-Stokes-like fluid theory, are another medium which display turbulent

behavior remarkably similar to flowing fluids. These flows are comprised of multiscale

interacting, circulating eddies. Thus turbulence in fluids and plasmas results from com-

plex, nonlinear phenomena that couples structures at different scales. Understanding the

spatial and temporal characteristics of the turbulent fluctuations remains a challenge that

requires multiscale measurement, theory, and simulation. It is the study of a magnetically

confined plasma exhibiting turbulent and chaotic behavior which is the focus of this thesis,

with primary focus on the turbulent cascade process and the observation of quasi-coherent

1
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structures. As well stated by Falkovich and Sreenivasan,

“Turbulent flows [have] allowed physicists to recognize and unambiguously express both the

coexistence of correlated structure and randomness and the role of correlated structures in

the transport of matter, heat and momentum” [29].

It is widely accepted that turbulence plays a significant role in transport, transport reg-

ulation, and generation of zonal flows [5, 25] in magnetized plasmas. Recent progress in the

characterization and interpretation of plasma turbulence has been made through diagnostic

improvements that allow observation of quasi-coherent structures and measurement of

multipoint statistics of steady driven turbulence [24]. Progress has been especially rapid

in certain types of strongly magnetized plasma and thin layers of fluid where the turbulent

dynamics are nearly two-dimensional [83, 79]. Turbulence in two-dimensional systems is

associated with an inverse energy cascade [51] that can generate self-organization at large

scales and structures with long correlation lengths [36]. Quasi-two-dimensional turbulence

appears in certain laboratory plasma devices [69, 76, 13], in the scrape-off-layers of toroidal

fusion confinement devices [96], non-neutral plasmas [26], in the solar wind [80], earth’s

atmosphere [45] and in driven thin sheets of fluid [73].

1.1 Turbulence in Two-Dimensional Systems

In two-dimensions, the equation of motion is given by the incompressible Navier-Stokes

equation. For a fluid with velocity v in the (x, y) plane,

Dv
Dt

=
∂v
∂t

+ (v · ∇)v = −
1
ρ
∇p + fext + ν∇2v (1.1)

Taking the curl of this equation and eliminating x̂, ŷ (App.A), the equation for vorticity
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ω = (∇ × v) · ẑ is obtained as

Dω
Dt

=
∂ω

∂t
+ (v · ∇)ω = g + ν∇2ω (1.2)

If g = (∇× fext) · ẑ = 0 and ν = 0 then vorticity is conserved. In the inviscid velocity-vorticity

formulation, mean energy E = 〈1
2v2〉 and enstrophy Z = 〈 1

2ω
2〉 are conserved quantities,

where 〈?〉 =
∫
?d2x. Plasmas admit the same formulation, where the vorticity ω is also the

Laplacian of the stream function, ∇2Σ [36, 41, 21]. Non-neutral plasmas are isomorphic

to the Euler equations [26], inviscid Navier-Stokes flow, where the electron density is

identically the charge density and serves as a proxy for vorticity. For a comprehensive review

of two-dimensional turbulence, see Tabeling’s monograph “Two-dimensional turbulence: a

physicist approach” [83].

The turbulence that occurs in two-dimensional systems is markedly different from three-

dimensional turbulence. Originally investigated as a simplification of 3D turbulence, it was

found that 2D turbulent systems exhibit unique properties in direct contrast to 3D. It is well

known that 3D fluid turbulence cascades energy to higher wavenumbers (smaller physical

scales) in a forward energy cascade [54]. Energy is put into the system at the injection scale

ki, where it is transferred to higher wavenumbers until it reaches the dissipation scale kd,

usually a viscous dissipation scale. The energy cascade obeys a k−5/3 power-law between the

injection scale and the dissipation scale in the inertial range ki < k < kd. This can be seen

by taking the kinetic energy v2 =
∫

S (k)dk in the inertial range as a function of wavenumber

and dissipation rate ε, neglecting the viscosity ν which only affects the spectrum in the

dissipation range. Thus the units of wavenumber spectrum are m3/s2. The units of ε are

m2/s3. Therefore by dimensional arguments, for S = S (k, ε), the energy wavenumber

spectrum must obey S = Aε2/3k−5/3.

When the fluid is 2D, there are two conserved quantities: energy and enstrophy (mean-

squared vorticity). The conservation of energy and enstrophy results in a forward enstrophy
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cascade to higher k, and an inverse energy cascade to lower k [51]. For wavenumbers larger

than the injection scale, the enstrophy is transferred to higher wavenumbers towards the

enstrophy dissipation scale obeying a k−3 power-law. Below the injection scale, the energy

is transferred to lower wavenumbers with a k−5/3 power-law like the 3D case, but the energy

flows in the opposite direction into large-scale structures (Fig.1.1).

3D 2D

Ek ∼ k−5/3

Energy 
Transfer

Enstrophy 
Transfer

Ek ∼ k−3

Ek ∼ k−5/3

kiki kd kd

log(k)

log(Ek) log(Ek)

log(k)

Figure 1.1: The spectral trends of energy for 3D and 2D turbulence.

When energy and enstrophy are conserved quantities, the direction of energy and en-

strophy transfer can be seen by injecting energy into an arbitrary wavenumber k2, where

k2 = 2k1 and k3 = 3k1. This process can be illustrated schematically in Fig.1.2. Using

δE = E(k, t2) − E(k, t1) the conservation is posed as

δE1 + δE2 + δE3 = 0

k2
1δE1 + k2

2δE2 + k2
3δE3 = 0

Solving the conservation system of two equations in three unknowns for the higher and

lower wavenumber energy and enstrophy,

δE1 = −
5
8
δE2 δE3 = −

3
8
δE2

k2
1δE1 = −

5
32

k2
2δE2 k2

3δE3 = −
27
32

k3
2δE2
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Therefore net energy goes to lower wavenumbers (δE1/δE3 > 1) and net enstrophy goes to

higher wavenumber (k2
3δE3/k2

1δE1 > 1).

CTX

Energy Injection

k1 k2 = 2k1 k3 = 3k1

Energy

Enstrophy

Figure 1.2: The transfer of energy and enstrophy in 2D turbulence

1.2 Turbulence in Laboratory Magnetized Plasmas

The bulk of research in laboratory plasma turbulence has been the study of drift-wave

turbulence in linear plasma devices and fusion reactor tokamak configurations. Drift wave

turbulence is believed to be responsible for the cross-field transport of particles and heat,

which can degrade the plasma confinement in a tokamak. The generation of ‘zonal flows’

inside the last closed flux-surface in a tokamak can form transport barriers, enhancing

the confinement of the device. An extensive review of zonal flows is given by Diamond,

et. al. [25]. The term ‘zonal flow’ originates in the meteorological sciences describing

the primarily west-to-east flow pattern in the Earth’s latitude lines. The zonal flows in

plasmas, occurring primarily in the poloidal direction, decorrelate radial structures called

‘streamers’ by an E × B shearing mechanism. This is phenomenologically similar to the
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lack of extreme weather in the zonal flow bands of earth, where large cyclones are less

likely to form because of high wind velocities and flow shear. Because these streamers

facilitate high levels of heat and particle transport, it is the destruction of streamers which is

believed to cause the transition from the low (L) to high (H) confinement mode of modern

tokamaks: the aptly named H-mode operating regime. Displayed in Fig.1.3 are a series of

zonal flow regions on the outboard side of a tokamak which are suppressing the radially

elongated streamer structures (displayed in red and blue) [53]. The generation of zonal

J. Candy

R. Waltz

(General Atomics)

ZF

Figure 1.3: Visualization of the simulation GYRO displaying zonal flows on the outboard
side of a tokamak

flows in plasmas is an active area of laboratory research, and extensive experimentation is

being carried out to understand how these shearing zonal flows are generated. Zonal flow

generation is primarily attributed to the Reynolds stress, which arises due to the random

fluctuations in fluid momentum, and causes transport of momentum [85]. The origin of

the shear flow is not entirely clear, but has an atmospheric analogy in Rossby waves [37],

which emerge when there is shear in rotating fluids and observed in the atmosphere. It is

also observed that zonal flow generation coincides with increases in quadratically nonlinear,

three-wave interactions [13]. It is the three wave interaction and power transfer from spectral

pumping at high wavenumber which may lead to the self-organized state of plasma drift-
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wave turbulence [39, 86]. Recent measurements in laboratory drift wave turbulence displays

the two-dimensional dual cascade, which generates large-scale structures [61, 60]. The

forward enstrophy cascade is measured by density fluctuations, where both the density and

vorticity fluctuations are assumed to be advected as passive scalars [14]. At the plasma

edge, outside of the last closed flux surface, the plasma does not benefit from the stability of

good average magnetic curvature because the field-lines intersect the diverter or confining

vessel. In this region, the fluctuations take on a flute-mode, or interchange-like character. At

the tokamak plasma edge, large amounts of plasma can be ejected towards the vessel wall

by edge-localized modes (ELMs), relaxing the transport barrier, and causing intermittent

transport events (ITEs) which can damage the material vessel. These large, coherent density

perturbations (called ‘blobs’) are transported radially by a dipolar potential structure 90◦ out

of phase with a density perturbation causing E × B motion.

As an innovative concept for a fusion reactor, the Levitated Dipole Experiment [47]

located at MIT is a new investigation in to plasma confinement at high β = p/(B2/2µ0).

The high β value represents good utilization of the magnetic field to contain the plasma

pressure. Because the dipole magnet is levitated, the magnetic field-lines are closed and

the plasma does not suffer from field-aligned losses, improving confinement. The potential

tends to be constant along a field-line, so it can only vary radially and azimuthally. When

the pressure gradient is marginally stable to interchange modes, convective cell generation

can occur and lead to transport of particles, but not energy [46]. Because of the significant

compression and expansion associated with the interchange motion, hot plasma will cool as

it is transported radially outwards, and be heated as it is moved inwards. If convective cells

are generated in LDX, they can serve as a means of fueling.

The laboratory dipoles of CTX and LDX thus provide a simple magnetic geometry inside

a large containing vacuum vessel. The large plasma volume allows excellent diagnostic

access for local and global measurement of plasma parameters and profiles.
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1.2.1 Nonlinear Dynamics

Finding renewed interest in the plasma physics community is a different viewpoint on the

turbulent fluctuations in plasmas: the nonlinear beating of a limited number of modes [84,

25, 92]. It has been shown in the past that the period-doubling route to chaos can produce

turbulent phenomena in simple gas discharges, possessing a broad power-law potential

fluctuation frequency spectrum and features describable by simple nonlinear oscillator

models [50]. Reduced models of convecton such as the Lorenz model [59] display chaos of

a low dimensionality. Observation of low dimensioinal chaos of vortices in plasmas has been

proposed [77] and observed in laboratory devices [17, 95]. Theoretical work and review

on vortex dynamics and chaos is presented by Aref [2], and a review of chaotic systems

in [81]. The power-law spectra of turbulent fluctuations in plasmas are suggestive of such

grand themes as self-similarity and self-organized criticality in nature [4].

1.3 The Interchange Instability in a Magnetic Dipole

Instabilities which can drive turbulent fluctuations are present in plasmas with non-uniformities

in pressure and/or magnetic field. In CTX, the dominant instability is the electrostatic

interchange instability [74], possessing a parallel wavenumber that is essentially zero

(k · B = k‖ = 0).

When treated as an initial-value problem, the textbook interchange instability is the

plasma equivalent of the gravitational Rayleigh-Taylor instability where a heavy fluid is

supported by a light fluid (Fig.1.4). In the gravitational case, instability occurs when

the pressure gradient and gravity have anti-parallel components ∇p · g < 0. Gravity is

seldom of importance in the motion of plasmas created in the laboratory, but the outward

magnetic curvature force from bent field-lines (Fκ = mv‖/Rcr̂) where Rc is the radius of

curvature vector, magnetic gradients (F∇B = −µ∇B) where µ = mv2
⊥/2B [31] and the

outward centrifugal force resulting from rotation (FΩ = −ρΩ × (Ω × r)) where Ω is the
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angular frequency [57, 58, 55] provide effective forces that act in a similar way. The plasma

equivalent to the gravitational instability occurs when the pressure gradient and magnetic

radius of curvature vector have anti-parallel components ∇p · Rc < 0, where the magnetic

field is concave towards the plasma. This is known as “bad curvature” [31]. A perturbation

of a plasma-vacuum interface or perturbations of an isobar can cause electrons and ions

to ∇B counter-drift1 to establish a perturbed electric field (Fig.1.4 right). The perturbed

electric field causes a E × B drift of the plasma, amplifying the initial perturbation. From

linear theory, pressure driven interchange modes are unstable for a pressure profile which

varies more rapidly than p ∼ L−4γ (γ ≈ 5/3 is the MHD ratio of specific heat) because

the flux tube volume expands as V ∼ L4. The parameter L is used to indicate equatorial

radius. Centrifugally-driven interchange modes are unstable for ∂N/∂ψ > 0 where ψ is the

magnetic flux and N is the particle number per unit flux [58]. In a uniformly magnetized

cylinder, this is a radial density profile with any gradient, but in a magnetic dipole this is

equivalent to a density profile steeper than n(L) ∼ 1/L4. The stability of a finite gradient

occurs because of the compression of flux-tubes associated with the interchange motion.

The Earth’s plasmasphere density profile is variable, but generally follows an exponential

profile inside the plasmapause, and an invariant region outside of the plasmapause [15].

While the instabilities previously studied in CTX could be modeled as quasi-periodic

bursts of Rayleigh-Taylor instability, the “high density regime” of a dipole confined plasma’s

quasi-steady convective driven interchange motion may be modeled as the plasma equivalent

of driven Rayleigh-Bernard convection [77]. In Rayleigh-Bernard convection, a fluid is

heated from below with gravity pointing downward (Fig.1.5). As a result of the heating, the

fluid becomes lighter on the bottom, resulting in antiparallel gravity and density gradient

vectors. If the temperature gradient is strong enough to overcome viscosity and thermal

diffusivity limitations, driven convective motion occurs. In a plasma, a driven pressure

gradient from heating and magnetic radius of curvature vector provide analogs to the driven

1The combination of a magnetic field gradient and magnetic curvature results in a drift velocity v =
1

qR2
c B2 (2W‖ + W⊥)Rc × B where W‖,W⊥ = mv2

‖
/2 and mv2

⊥/2 respectively.



CHAPTER 1. INTRODUCTION 10

∇n
+

!

+ +

+
+
+

-
-
-

-
-

-v∇B,i v∇B,eE1

E1 ×B0

E1 ×B0E1 ×B0
B0

g/Rc

Figure 1.4: The equivalent of a Rayleigh-Taylor instability in a plasma. A perturbation of
the plasma boundary grows with the positive feedback provided by E1 × B0.

density gradient and gravity vector.

Hot

Cold

g ∇n

Figure 1.5: The physical configuration for exciting Rayleigh-Bernard convection in a fluid.

Drift instabilities, also called the universal instability, can exist as well. Drift instabilities

do not require magnetic curvature forces to be present, but only a pressure or density gradient

with a finite k‖ for potential (non-zero parallel electric field). These drift instabilities are

expected to be sub-dominant to interchange instabilities in CTX because of the strong shear-

free confining field, and no experimental evidence has been shown to the contrary. Drift

modes tend to saturate near the drift scale [40, 38] with k⊥ρS ≤ 1 where ρS = CS /Ωc, CS =
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√
Te/mi and Ωc is the ion cyclotron frequency. Drift modes, because of their slower growth

rates, tend to have density fluctuations levels lower than interchange fluctuations [12, 38],

although fluctuation levels can be high (ñ/n0 ≤ 40 %) near shear-flow regions or strong

pressure gradients [13].

The instabilities previously investigated in CTX were the hot electron interchange (HEI)

instability [65, 64, 56, 63, 62, 55] and the centrifugal instability [55, 57, 58]. The first was

an interchange instability driven by hot electron pressure, and caused periodic ‘bursts’ of

broadband fluctuations which ‘chirped’ in frequency and saturated nonlinearly [11]. These

bursts can be modeled as an unstable initial value problem, with growing fluctuations which

increased in frequency, occurring approximately every 1 ms. The centrifugal instability was

driven by rapid, near-sonic rotation of the plasma, created by radial currents between the

plasma boundaries. Centrifugal modes grow faster for higher azimuthal mode numbers than

the HEI modes, but with much lower amplitudes [58].

The plasmas investigated in this thesis have higher densities, and differ substantially from

plasmas dominated by HEI modes. When the HEI instability is suppressed by increased

neutral gas fueling, the density rises by more than an order of magnitude to n0 ≈ 1016 m−3,

and the fluctuations become characteristic of quasi-steady driven turbulence. No quasi-

periodic bursts of hot electrons have been observed in this high density regime. The

spectral trends of density and potential exhibit power-law slopes of f −α. These plasmas

possess large amplitude fluctuations in density δn/n0 ∼ 50% and potential eΦ̃/Te ∼ 50%,

and are dominated by large structures in the plasma. Large relative fluctuation amplitude

and large structure size are characteristic of interchange-like fluctuations in tokamak SOL

edge turbulence as well, where the plasma does not benefit from good average magnetic

curvature [3].

In the assertion of the electrostatic nature of the turbulent fluctuations, one criteria to

be met is the low beta case β � me/mi, where β = p/(B2/2µ0), or vTe � vA where vTe

is the electron thermal velocity and vA is the Alfvèn velocity [34]. This criteria is not
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strictly met only where the magnetic field is weakest at the equatorial plane, where it is

violated by a factor of two. The electrostatic approximation is nevertheless appropriate

because in the magnetic dipole geometry, the interchange instability always dominates over

ballooning instabilities which perturb the confining field [33]. Furthermore, the previous

experimental and computational studies of fluctuations in dipole-confined plasmas were

very well described by electrostatic models in both the linear and nonlinear regimes, even

though the fluctuation frequencies and betas of those plasma discharges were much higher

than in the experiments in this thesis.

The magnetic dipole configuration presents a strong mirror effect to confined particles.

Because the fluctuations investigated in this thesis are low frequency (ω � Ωi, ωb) the

plasma can be considered a two-dimensional system obeying the MHD equations and

conserving µ and J [16]. This assumption has been shown to be accurate even for fluctuations

above the ion cyclotron frequency when the basic plasma quantities are represented in a

‘bounce-averaged’ sense [65]. In these cases, plasma fluctuations are resonant with hot

drifting particles produced by ECRH, and these fluctuations can can exceed 3 MHz.

While a fluctuation spectrum with power-law of k−α is certainly suggestive of turbulent or

chaotic processes, rigorous investigation into the correlation time and length of fluctuating

plasma quantities, spectral trends, chaotic dynamics, and nonlinear mode coupling are

necessary to fully understand the nature of the turbulence.

1.4 Organization

The organization of this thesis will be as follows:

In Ch.2, I will describe the experimental apparatus for investigation of dipole-confined

turbulent plasmas and the basic plasma parameters and profiles. All experiments are carried

out in the Collisionless Terrella Experiment at Columbia University’s Plasma Physics

Laboratory. The experimental apparatus, magnetic geometry, and available diagnostics will
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be reviewed. Diagnostic upgrades of a fast camera, triple probe, and new amplifiers for the

global polar imaging diagnostic will be described in detail. The basic plasma discharge time

series and profiles of basic plasma parameters will be provided.

In Ch.3, signal analysis techniques for turbulent and chaotic fluctuations will be de-

scribed. Conventions for interpreting the results from the signal analysis methods will

be determined, and the qualitative and quantitative implications of these methods will be

outlined. Verification and validation of the more sophisticated analysis tools will be tested

on model data.

In Ch.4, comprehensive measurements of dipole-confined plasma turbulence will be

presented. Investigations into the local characteristics of plasma fluctuations are performed

by single probe diagnostics measuring density and potential. The global density profile and

fluctuations are observed by the polar imaging diagnostic and fast camera, and the global

potential structure is computed by inverting the continuity equation for plasma density. The

fluctuation energy spectrum and results from quadratic nonlinear coupling analysis will be

presented.

A numerical simulation for testing the model equations in the magnetic dipole geometry

has been developed and the results will be detailed in Ch.5. The parallelization of the

simulation code and performance results will be provided. The development of a global Fast

Poisson Solver in collaboration with the MCS division of Argonne National Laboratory will

be described in detail. A conserving source and sink of ion density, electron distribution

function and electron energy is used to achieve a steady, driven turbulent state. Using

analysis techniques developed in Ch.3, comparisons between laboratory observation and

simulation results will be presented.



Chapter 2

The CTX Device

The CTX device is a mechanically supported dipole electromagnet in a 1.4 m diameter

aluminum vacuum vessel. Vacuum from atmospheric pressure is achieved by a mechanical

roughing pump followed by turbo molecular pumping to a pressure of p ≈ 1 × 10−6 Torr.

Once this base pressure is reached, a cryogenic pump is used to maintain a base pressure of

p ≈ 1.7 × 10−7 Torr for all experimental conditions. Plasma production is achieved through

electron cyclotron resonance heating (ECRH) of 1 kW at 2.45 GHz. Neutral hydrogen is

puffed into the vacuum chamber through a piezo-electric valve, typically in 1-10 µs intervals

to achieve the desired plasma density.

14
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Figure 2.1: The CTX Device is a mechanically supported dipole magnet inside a vacuum
vessel.
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Figure 2.2: Equatorial plane of a confined plasma in a magnetic dipole. The major radius is
parameterized by L when referring to equatorial values. The plasma rotation is observed to

be in the −ϕ̂ direction. (False radial spacing for illustrative purposes)
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2.1 The CTX Magnetic Dipole

The CTX magnetic field can be well described by the ideal dipole approximation [55]. The

ideal magnetic dipole field can be expressed in Clebsch coordinates as

B = ∇ϕ × ∇ψ = ∇χ (2.1)

where B is the vector magnetic field, ϕ is the azimuthal angle, ψ is the magnetic flux, and χ

is the magnetic scalar potential. In spherical coordinates, this axisymmetric field, magnetic

flux and magnetic scalar potential can be written as

B(r, θ) =
M
r3

√
1 + 3 cos2 θ ψ(r, θ) =

M
r

sin2 θ χ = M · ∇
1
r

=
M
r2 cos θ (2.2)

Quantities are often quoted in terms of equatorial radius L, where θ = π/2. In CTX,

M = B0L3
0ẑ, B0 ≈ 0.0875 T (875 Gauss). This is the field strength at the ECRH resonance

resonance for 2.45 GHz occurring at the equatorial radius of L ≈ 0.27 m, giving M =

0.00172 Tm3.

Ψ Contours

z

ψ Contours

ẑ

Drift

Bounce

Cyclotron

Figure 2.3: Contours of ψ=constant. Particle motion is separated into cyclotron, bounce,
and drift.
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There are three particle motions in the vacuum magnetic field configuration: cyclotron,

bounce, and drift each with their own characteristic frequency ωc � ωb � ωd, and their

own adiabatic invariant µ, J, ψ, respectively. For the third invariant, E⊥ is the perpendicular

energy of the particle, and the integral encloses a drift path around the dipole. The cyclotron

frequencies for electrons and Hydrogen ions have been calculated and are shown in Fig. 2.5.

ωc =
|q|B
m

µ =
mv2
⊥

2B
(2.3)

ωb = 2π
( ∫ ds

v‖

)−1

J =

∫ b

a
mv‖ds (2.4)

ud =
µ

q
∇B × B

B2 ψ =

∮
mE⊥dϕ (2.5)
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Figure 2.4: Magnetic field strength, magnetic flux and flux-tube volume per unit flux
(δV =

∫
dχ/B2) as a function of L, the radial distance along the equatorial midplane of

CTX.
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Figure 2.5: Electron and ion cyclotron frequencies in CTX on the equatorial midplane.
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2.2 The Diagnostic Set

Plasma diagnostics are the means by which basic plasma parameters are measured either

directly (e.g. probes, energy analyzers), or indirectly (e.g. photodiodes, fast cameras, x-ray

emission). CTX is outfitted with a wide spectrum of diagnostics to measure neutral pressure,

microwave forward and reflected power, density, potential, x-ray emission (hard and soft),

visible light (photodiodes, fast camera), particle flux, polar current and mach number for

flow measurements.

2.2.1 Basic Diagnostics

Neutral Pressure

The neutral pressure in CTX is measured by an ionization gauge. The current from the ion

gauge is calibrated for Hydrogen, and stored in the data tree.

X-ray

ECRH creates high energy electrons which produce X-rays. In low density plasmas, elec-

trons above the keV range produce hard x-rays by bremsstrahlung with cold ions or neutrals.

In the high density operating regime, the plasma is more thermalized, and the produc-

tion of such high energy electrons is reduced, indicated by a drop in the measured X-ray

emission. In the high density regime, the soft X-ray emission from less energetic electron

bremsstrahlung is observed to increase.

Photodiodes

A pair of photodiodes are used to measure the visible light intensity for high density

discharges. In the high density, turbulent regime there is sufficient visible light for the
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photodiode pair. The visible light signal from a plasma source [97] is given by

S ∼ nn fp(ne,Te)Apq (2.6)

where nn is the neutral density, f is the electron distribution function, and Apq is the radiative

decay rate for of the p to q transition. The neutral density is approximately constant over the

timescale of fluctuations, therefore fluctuations in light intensity should follow fluctuations

in density and temperature. The magnitude of visible light intensity should be proportional

to neutral pressure in CTX, and this has been see experimentally (Fig.2.13). In addition, the

fluctuations in visible light intensity has been correlated with fluctuations in plasma density,

and the maximum correlation is found (Fig.4.17) at zero time-lag. This indicates that visible

light measurements can serve as a proxy for density fluctuations.

2.2.2 Probes

Floating Potential Probes

CTX is outfitted with a number of high-impedance floating potential probes. These probes

are stainless-steel wire tips with 100 kΩ resistors near the probe tip. Each probe tip is

connected to a co-axial cable and run to amplifiers. The signal from the floating potential

probes is digitized at rates up to 10 MHz with LeCroy TR6841 transient recorders.

The Single-Electrode Langmuir Probe

The Langmuir probe in CTX is a flat square Isat probe (See B.1, B.2) with area A = 1 cm2.

This Langmuir probe is biased at Vb = −100 V � Te/e for the bulk electron temperature of

Te < 10 eV. The bias is applied through a battery pack coupled with a 0.1 µF capacitor in

parallel for fast response.
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Installation of New Triple Probe

A new triple probe array (See B.3, B.4) has been installed on CTX and is used to measure

the edge plasma parameters of floating potential, temperature, and density (Fig.2.6). The

array consists of three triple probes with radial separation of 2.54 cm between the probe sets.

There is a 0.45 cm separation between the individual probe tips, which is a few times the

electron Debye length λDe ≈ 1 mm.. The triple probe array is inserted into the CTX vacuum

chamber at the equatorial midplane and is systematically adjusted to take measurements

across the edge plasma radius.

The triple probe is wired with a large 10 MΩ resistor for accurately measuring the

floating potential, and a 180 V supply to collect ion saturation current Fig.2.7. All of the

signals are transmitted through voltage dividers to reduce the amplitude to ±5 V.

Vout = Vin
R2

R1 + R2
(2.7)

where R1 is the larger resistor. The signal from the probe measuring the floating potential is

then amplified because of its low signal level.

Figure 2.6: A rendering and photograph of the triple probe array installed on CTX. The
array consists of three triple probes with radial separation of 2.54 cm between the probe sets.

There is a 0.45 cm separation between the individual probe tips.
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Triple Probe
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Thursday, January 15, 2009

Figure 2.7: The circuit for the triple probe installed on CTX. The output from the voltage
divider providing VFloat is then amplified before being digitized.

2.2.3 Polar Imager

The “polar imager” (Fig. 2.8) is a unique array of 96 gridded particle detectors situated at

the pole of the CTX dipole magnet. The detectors are arranged uniformly in the natural

magnetic flux coordinates (ϕ, ψ). All detectors exist at B ≈ 2 kG, where the gyro-radius

of like particles will be the same regardless of which aperature they enter. The magnetic

field at the aperture of each detector is approximately the same, thus collecting current from

flux tubes of equal magnetic flux. The flux tube volume δV =
∫

dχ/B2 ∝ L4 increases

dramatically with increasing radius: detectors at larger radii see a much larger flux tube

volume. The magnetic cap of the polar imager diagnostic is stainless steel plasma spray-

coated with 12 mil thick of alumina. The spray-coated insulator prevents currents from

flowing along the field lines to the magnet cap itself. Each gridded particle detector (retarding

field energy analyzer) has a 1 cm2 aperture with a series of individually biased stainless steel

meshes between the aperture and the stainless steel collector plate. There are three grids used

to repel electrons, ions, and a grid biased (-9 V) to suppress secondary electrons emission

from the collector plate. The individual meshes can be biased to repel either electrons, ions,

or both. When the detectors are un-biased the parallel current being collected is a good



CHAPTER 2. THE CTX DEVICE 23

approximation to the flux-tube integrated electron distribution function, F, by measuring

the electron flux to the poles due to electron-neutral collisions. The net current in un-biased

operation is negative, and increases in magnitude with increased fueling. Upon application

of small negative bias (|Vbias| < 50 V) to the electron repeller grid, the magnitude of the

polar current decreases while remaining negative. The application of voltages to the gridded

polar detectors can select which species is collected, as well as determine the parallel energy

of the collected species.

When viewing of the plasma density is desired, the electron grid is biased sufficiently

negative to repel electrons, effectively detecting flux-tube integrated ion saturation current,

Ipolar ∝ N. When biasing sufficiently negatively (Vbias ≈ −100 V), the net polar current

changes sign, becoming positive.

n ∝
Ipolar

δV
(2.8)

Magnetic Field
Lines

Mod B
Lines

r

z

Figure 2.8: The polar imager diagnostic.
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Installation of New Amplifiers

The polar imager collects a current proportional to the flux tube integrated density, and in

the turbulent regime this current increases by an order of magnitude. To view the global

structure and temporal variation of plasma fluctuations in the high density regime, new

low-gain transimpedance amplifiers have been developed and installed on CTX to convert

the collected current into a voltage. This voltage signal is recorded by Aurora A14 Module

digitizers (14 bit, 128 ks/record) at rates up to 1 MHz. The amplifiers used in the low

density regime are 2 MΩ transimpedance amplifiers (|Ipolar| < .25 µA), while the high

density amplifiers have a 51 kΩ transimpedance (|Ipolar| < 100 µA). The field-aligned

current increases by a factor of 400 from the low to high density regime, necessitating the

production of low-gain amplifiers. This can be seen in Fig.2.9 where the increase in plasma

density causes the polar detectors to become completely saturated. These new low-gain

amplifiers allow imaging of the plasma whether the grids are biased or unbiased. When the

grids are unbiased, the collected current is larger than when repelling electrons (Fig.2.10).
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Figure 2.9: The plasma density and polar current as the gas fueling is increased displaying
saturation of the polar detector. The plasma discharge is initiated near 0.5 s with a small

amount of neutral H2. A fast gas injection is triggered at 0.2 s increasing the plasma density.
Another gas injection is triggered just before 0.4 s causing a transition into the high density

regime.
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When the grids are biased to repel electrons, the magnitude of the collected current is

decreased (|Ipolar| < 5 µA), and the sign changes from negative to positive (Fig.2.10). It is

when electrons are repelled that the polar imager records current fluctuations proportional

to fluctuations in density as a Langmuir probe in the bulk plasma collecting ion saturation

current (See Fig.4.9).
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Figure 2.10: The polar current measured by a single gridded particle detector with the new
low-gain amplifier as the electron repeller bias is increased from Vbias = 0 V to

Vbias = −100 V. With sufficient bias, the polar detectors measure plasma density fluctuations
in the high density regime.

2.2.4 Fast Camera

As a new diagnostic to CTX, a high speed digital video camera has been used to image

the visible light emission during high density discharges. The Vision Research Phantom

v7.1 (Fig.2.11) is a high speed CCD camera capable of frame rates above 10,000 frames per

second, and uses a large aperture Sigma 30 mm f/1.4 lens. Video images of the plasma are

captured through a port-hole located near the magnet vacuum feed-thru and focused at the

equatorial midplane of the dipole field.
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Figure 2.11: The Phantom v7.1 high speed digital video camera and the view-port through
which the high-speed movies are taken (digital still photograph).

As the frame rate of the camera is increased, less light is captured within each frame.

Because of the low light intensity from plasmas in CTX, frame rates greater than 10,000 fps

have poor signal to noise ratios. Although this frame rate is slightly too slow to view the

plasma motion of interest with f ≈ 1 − 4 kHz, average profiles of light intensity and light

fluctuation intensity can still be useful.

2.3 Producing Plasmas in CTX

Electron Cyclotron Resonance Heating (ECRH) at 1 kW is applied to neutral Hydrogen (H2)

to create the plasmas in CTX. Plasmas in CTX are categorized by ‘low density’ with neutral

pressure pH < 10−5 Torr achieving plasmas around n ≈ 1014 − 1015 m−3. In the ‘high density

regime’ with neutral pressures pH > 10−5 Torr, densities can exceed n ≈ 1016 m−3. The high

density regime sees plasma densities approach the cutoff density nc ≈ 7.5 × 1016 m−3. Once

a low density plasma is formed, a second gas injection is triggered to cause the transition to

the high density turbulent confined state.

The low density regime is characterized by quasi-periodic instabilities previously identi-

fied as the hot electron interchange (HEI) instability. When the neutral pressure is increased

past the threshold level the fraction of hot to cold electrons drops. This stabilizes the hot

electron interchange mode [52], and the high density, turbulence confinement regime is

achieved.
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2.4 Basic Plasma Parameters

Figure 2.13: The evolution of basic plasma parameters during a discharge which enters the
high density, turbulent regime at 0.2 seconds. (a) Hydrogen pressure, (b) microwave
forward and reflected power, (c) edge density with an Isat probe, (d-f) edge floating

potential, smoothed density and smoothed temperature from a triple probe, (g) photodiodes,
(h) hard x-ray emission.
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2.4.1 Transition to Turbulent Regime

Upon gas injection which increases the neutral pressure above 10−5 Torr, a dramatic transition

occurs to the high density, turbulent confined state. The transition is marked by a large

amplitude, non-axisymmetric, rotating m = 1 potential mode with frequency near 18-20 kHz.

The DC value of the potential drops to Φ f < −50, with large amplitude potential fluctuations

of order Φ̃ ∼ 30 V. The ion saturation current at the plasma edge becomes strongly modulated

and negative, caused by the presence of hot electrons at the plasma edge. The hard X-ray

emission drops and the soft x-ray emission rises, indicating a reduction of the highest energy

hot electron production. Immediately following the transition to turbulence, the density rises

dramatically, and broadband fluctuations in potential and density are observed.

0.160 0.162 0.164 0.166 0.168 0.170
Time (s)

0

6.0

25 ms

I s
a
t (b)

-0.002

0.0

0.008   

-2.42•10-1

2.93•10-3

2.48•10-1

0.1680 0.1688 0.1695 0.1702 0.1709
Time (s)

0

83

167

250

333

417

500

F
re

q
 (

k
H

z
)

0.0

0.2

0.4

0.6

0.8

1.0

F
o

u
ri
e

r 
A

m
p

lit
u

d
e

1 ms

I s
a
t (a)

f 
(M

H
z)

0
0
.5

-5.0

-4.0

-3.0

-2.0

-1.0

0.30 0.32 0.34 0.36 0.38
Time (s)

0

10

20

30

40

50

F
re

q
 (

k
H

z
)

Log10 Spectrograph

f 
(k

H
z
)

0

60

0.10 s

Gas Puff

(a) (b)

L
o
g 1

0
 In

te
n
si

ty
 (

A
U

)

-5.0

-1.0

Figure 2.14: The transition from the low density regime (a) dominated by HEI to the high
density turbulent regime (b).



CHAPTER 2. THE CTX DEVICE 30

2.4.2 Density and Potential Profile

Measurements of density profiles are obtained through a movable Langmuir probe measuring

ion saturation current (proportional to density). The numerical values of density in Fig.2.16

are obtained by equating current from the Iisat probe and density from the triple probe at

the edge of the plasma. The Iisat probe is then inserted into the plasma to measure the

density profile, as well as relative fluctuation level (seen in Fig.2.15). The density profile is

measured to be slightly steeper than n ∼ L−4. This serves as an indication that rotation may

play a role in exciting fluctuations, as this is the marginally stable profile for rotationally

driven interchange motion. The density fluctuation level is large across the accessible

plasma radius, with peak-to-peak levels of δn/n0 ∼50% near L=50 cm where most of the

fluctuation measurements are taken. The triple probe is large, and tends to perturb the

plasma significantly when inserted at the equatorial midplane, and measures a profile less

steep than the Iisat probe or radial polar loss profile.

Figure 2.15: Ion saturation current (∝ n) measured at equatorial radius L=34 cm and
L=60 cm. Both are plotted on the same scale in the bottom trace for reference. The

f ∼ 30 Hz oscillations are attributed to the magnet power supply, and not plasma dynamics.
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The potential profile inside the SOL is measured to follow an approximate 1/L trend.

This indicates approximate rigid rotation of the plasma near the edge of the device in the −ϕ̂

direction. The edge potential profile in high density, as well as the calculated and observed

rotation, are in the same azimuthal direction as the near sonic driven rotation investigated

previously in CTX [57]. The time-averaged potential profile can also be calculated by

inverting the continuity equation (Sec.3.34). The measured profile and calculated profile

follow similar trends for L ≥ 50 cm where the plasma is accessible with a floating potential

probe.
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Figure 2.16: The radial profiles of density and potential. The density profile is maintained
slightly steeper than the marginal profile for interchange modes, n ∝ L−4. Fluctuation

intensity rises at larger radii. In the bulk plasma, the potential is measured to vary as 1/L.
The potential profile from the stream function calculation agrees with probe measurements,

as well as rotation speed near 1-2 kHz at L = 50 cm.
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2.5 Summary

The high density, turbulent plasmas which are investigated in this thesis are produced by

electron cyclotron resonance heating (ECRH) of neutral hydrogen. The plasmas are stable

to the hot electron interchange (HEI) mode due to an increase of colder background plasma,

achieved through increased fueling. The stability to HEI modes allows the density to increase

to n ∼ 1016m−3, with bulk electron temperatures near Te ∼ 8− 10 eV. These plasmas exhibit

large relative fluctuations of density and potential as they rotate in the E × B azimuthal

direction. The density profile is measured to vary slightly steeper than n ∝ L−4 on the

outboard side of the device, and the potential profile indicates approximate constant rotation

for this region of f ∼ 1 − 2 kHz.
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Signal Processing Techniques for

Turbulent and Nonlinear Fluctuations

A time series represents a measurement, and any time series has certain intrinsic features

such as mean , variance, skewness, kurtosis, and trend. The time series also has certain

other features such as auto-correlation time and frequency spectrum which may reveal the

underlying processes which created it. The interpretation of a measurement and relation to

the medium requires data analysis techniques to determine its statistical properties. This

is usually done by some type of transformation from the time to frequency domain. Other

techniques which are not spectral-based can also provide valuable information, such as the

empirical mode decomposition based on the Hilbert transform [42] and the bi-orthogonal

decomposition based on the Singular Value Decomposition (SVD) [22]. While most of the

analyses are performed on a single time series or between two time series, the bi-orthogonal

decomposition is a global decomposition of many space-time points. The inversion of the

continuity equation for calculating the stream function is another such global calculation.

This chapter reviews standard signal processing techniques and establishes conventions

which will be used in the following chapters. Some of the analysis techniques used in

this thesis rely heavily on numerical computation. These more sophisticated analyses

33
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are validated on model problems with well-defined inputs and outputs for determining

their accuracy, and interpret the results unambiguously. The stream function calculation is

benchmarked by evolving a two-dimensional density profile in time, and using spatial and

temporal finite differences for inversion of the continuity equation.

The calculation of spectral energy transfer is validated on a turbulence model dependent

on a linear dispersion relation, and estimates the structure coupling between modes across

the entire relevant spectral region [71]. The amplitude correlation technique is an alternative

method for investigating nonlinear coupling which investigates specific bands of the turbulent

spectrum [20, 68]. Both of these methods are benchmarked on analytically defined models.

3.1 The Fourier Transform

The measurements of plasma fluctuations are stored in a digitized database, and these data

are subject to several of analysis procedures, typically based on the Fourier Transform. The

analytical Fourier transform φ̂(ω) of a time series φ(t) is given by

φ̂(ω) =

∫
φ(t)e−iωtdt (3.1)

where t, ω denote time and frequency respectively. The Fourier spectrum is a complex

quantity, consisting of real and imaginary parts. This integration determines the dominant

fluctuating component in a time series. In practice, this integration is performed numerically

with the Fast Fourier Transform (FFT). The FFT quickly transforms a signal from the

time domain into the frequency domain, and returns a complex-valued array. Windowing

functions [35] are used to more accurately determining the spectrum by eliminating the

edge effects of a finite time realization. The Hanning window is used to compute all spectral

quantities in this thesis.
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3.2 Ensemble Statistics

Turbulent fluctuations are ‘non-stationary’, and the spectrum of these fluctuations are neces-

sarily calculated statistically in an ensemble of equivalent time intervals. Each ensemble

consists of hundreds or thousands of individual realizations of the time record. Fluctuations

of potential and density in CTX have a power-law character, where a single realization

of the time record is not necessarily representative of the long-time averaged spectrum.

The frequency at which peak power exists can vary for any single realization of the signal,

and therefore the ensemble spectrum represents the statistical nature of the fluctuations

in the plasma. This defines the need for ‘ensemble statistics’ when describing turbulent

fluctuations.

The ensemble spectrum of a time varying quantity A(t) over sub-samples A(i)(t) is given

as

〈Ã〉 ≡
1
M

M∑
i=1

Ã(i) (3.2)

where Ã(i) being the Fourier transform of A(i) is an array containing any number of elements.

The time-series A(t) is analyzed in realizations length ∆t. The width of the window must

be chosen to accurately capture the low frequency components of the signal. The lowest

frequency able to be resolved is 1/∆t, and is also the increment of the frequency axis. The

highest frequency able to be resolved is the Nyquist frequency given by fd/2, half of the

digitizing frequency. The ‘window’ of time is then advanced with time step δt; typically

δt = ∆t/2. Decreasing δt provides better time resolution in a spectrogram plot of fluctuations.

Increasing δt provides better frequency resolution in a spectrogram plot of fluctuations.
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3.3 Auto-Correlation and Power Spectrum

3.3.1 Correlation Function

With a single time series, the auto-correlation function can be calculated as

C(τ) =

∫
S (t)S (t − τ)dt∫

S (t)2dt
(3.3)

and is normalized to C(τ) ∈ [−1, 1]. The correlation time interval, τc, can be defined as

τc = C(0)−1
∫

C(τ)dτ, or τc = 1
2

∫
|C(τ)|dτ for a correlation function which is positive.

A “correlation-in-time” spectrogram-like plot can be created by forming a sequence of

correlation functions in a two-dimensional array

C(t, τ) = [C(i)(τ),C(i+1)(τ) . . .] (3.4)

where each correlation function C(i)(τ) =
∫

S (i)(t)S (i)(t − τ)dt/
∫

S (i)(t)2dt. This can then be

integrated in time to form an ensemble correlation function as

〈C(τ)〉 =

∫
(C(t, τ)dt =

1
M

M−1∑
i=0

C(i)(τ) (3.5)

3.3.2 Ensemble Spectrum

Utilizing the time series obtained from a single diagnostic, the ensemble spectrum can be

calculated as

〈|S̃ (ω)|2〉 ≡ 〈S̃ (ω)S̃ ∗(ω)〉, (3.6)

which is the auto-spectrum, or auto-power, or auto-correlation function in the frequency

domain. The asterisk (∗) denotes complex conjugate. The auto-spectrum is a real quantity,

and measures the relative amplitude of each frequency component in the time-series. For a

single diagnostic, quantities such as ensemble fluctuation spectrum and bi-spectrum [49] are
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spectral quantities which can be calculated. The bi-spectrum is a measure of the strength of

quadratically nonlinear interactions in a signal and is given by

B(ω1, ω2) = 〈S̃ (ω1)S̃ (ω2)S̃ ∗(ω1 + ω2)〉 (3.7)

and is a complex quantity. The bi-coherence is a power weighted bi-spectrum, and deter-

mines

b2(ω1, ω2) =
|B(ω1, ω2)|2

〈|S̃ (ω1)S̃ (ω2)|2〉〈|S̃ (ω1 + ω2)|2〉
(3.8)

which is essentially a quadratic correlation coefficient.

3.4 Cross-Correlation and Fourier Statistics

3.4.1 Cross-Correlation Function

With two time series, the cross-correlation function is

C1,2(τ) =

∫
S 1(t)S 2(t − τ)dt√∫
S 1(t)2dt

∫
S 2(t)2dt

(3.9)

and is normalized to C1,2(τ) ∈ [−1, 1]. This quantity is useful in calculating the ‘lag-time’

between two signals. The lag time, τLag, is the value of τ at which the cross-correlation

function is maximized. As an example, consider two test pulses S 1(t) = sin(ωt), S 2(t) =

sin(ωt − π/2) at 2π f = 10 Hz in a gaussian envelope where the second signal lags in phase

by π/2 Fig. 3.1. The lagged measurement represents the recording of the same pulse at a

downstream location, or in the direction of propagation. The cross-correlation function has a

maximum at τ = 0.0250 s. The phase shift between the signals in radians can be calculated

by |α| = ωτLag = 2π × 10 Hz × 0.0250 s which is equal to π/2. If the two measurements

were taken by diagnostics separated by ∆x, then the velocity of propagation of this pulse

would be ∆x/τLag.
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Figure 3.1: Test pulse and cross correlation function between signals 1 and 2 (red). The
positive lag time indicates that signal 2 lags signal 1, or occurs at a later time.
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3.4.2 Cross-Coherence and Phase

When two diagnostics are used, valuable information about the fluctuations can be ob-

tained. The cross-power spectrum and cross-phase are the two of the most widely reported

measurements in plasma physics, and are defined as

〈C̃1,2〉 ≡ 〈S̃ 2S̃ ∗1〉

〈α1,2〉 ≡ tan−1
(
=
[
〈C̃1,2〉

]
<

[
〈C̃1,2〉

])

and are also calculated in an ensemble-sense. The cross-power is a complex quantity with

both real and imaginary parts. The reported value of cross-phase is the value where cross-

power is maximized. There can be many peaks in the cross-power spectrum, and each peak

has a phase value associated with it. The phase value where there is negligible cross-power

is meaningless. A normalized cross-power is the squared cross-coherence

〈κ1,2〉
2 ≡

|〈C̃1,2〉|
2

〈S̃ 1S̃ ∗1〉〈S̃ 2S̃ ∗2〉
(3.10)

which is bounded by 〈κ1,2〉
2 ∈ [0, 1]. A peak in the cross-coherence is considered meaningful

if it is non-zero and converged. If there exists one dominant peak in the spectrum, then the

integrated cross-phase can be calculated as

〈α1,2〉
∫ ≡

∫
〈α1,2〉(ω)|C̃1,2(ω)|dω∫
|C̃1,2(ω)|dω

(3.11)

Two test sinusoids sin(ωt), sin(ωt−π/2), ω = 2π×( f0 +δ f ) with f0 = 500 Hz digitized at

10 kHz have been created. Each has 10% random noise on the frequency (δ f ∈ [−25, 25] Hz)

and 20% random noise added to the amplitude. The ensemble cross-coherence, phase, and

integrated cross-phase have been computed and are shown in Fig. 3.2. Without performing

the appropriate ensemble averages, the cross-power and phase cannot detect the correct

frequency-phase relation between the two test signals.
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Figure 3.2: (a) Ensemble coherence and (b) phase for test signals phase shifted by −π/2.
The circle indicates the phase value where there is significant coherence. The integrated

cross-phase is 〈α1,2〉
∫ =-1.57907 which is an error of 8%. (c) The cross-power and (d) cross

phase for the same signals without performing ensembles. The integrated phase is
〈α1,2〉

∫ =0.0103.

When two probes are separated by a distance ∆x, the wavenumber spectrum as a function

of frequency can be calculated using the relationship

k(ω) =
〈α1,2〉

∆x
(3.12)

which provides information about the dispersion relation of the wave [10, 23]. When the

dispersion curve is linear, one is able to relate a frequency to a wavenumber by a phase

velocity, given by vph = ω/k, for pure linear advection.
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3.5 Hilbert Spectrum

A new method for examining nonlinear phenomena, called the Empirical Mode Decomposi-

tion [42], aims to decompose a complex time varying signal into a series of ‘mode functions’.

The mode functions all live at different time scales and at different amplitudes. This is an

alternative to prescribing a Fourier basis and calculating the amplitude in each Fourier mode.

To decompose a function is to examine the intrinsic time scales and investigate the amount

of signal power which exists there.

The Hilbert Transform of a time series X(t) is given by

Y(t) =
1
π

P
∫ ∞

−∞

X(t′)
t − t′

dt′ (3.13)

where P indicates the Cauchy Principle Value. With this transform, we can define a new

analytic function Z(t) such that

Z(t) = X(t) + iY(t) = a(t)eiθ(t) (3.14)

We now can extract the amplitude and the instantaneous phase via

a(t) =
√

X(t)2 + Y(t)2 θ(t) = arctan
(Y(t)
X(t)

)
(3.15)

The phase, θ, must be ‘unwrapped’, in order to take the time derivative, yielding the

instantaneous frequency ω(t), given by

ω(t) =
dθ(t)

dt
(3.16)

The average frequency, or slope of the phase, gives an average time scale at which the

fluctuations occur.
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Duffing’s equation is a classic nonlinear oscillator. One form of the ODE is

d2x
dt2 + x + εx3 = γ cos(ωt) (3.17)

where ε is the nonlinear parameter, γ is the amplitude of the driving term, andω is the driving

frequency (here ω2
0 = 1). Duffing’s equation has been solved by perturbation methods with

the solution as a basic frequency and all its superharmonics x(t) = cosωt + ε cos 3ωt +

ε2 cos 6ωt. While that solution may be correct mathematically, it is still a sum of linear

modes to represent a single nonlinear phenomena. Neither the solution or its components

lend any physical insight into the full nonlinear system. If we write Eq.3.17 in the following

form

ẍ + x(1 + εx2) = γ cosωt (3.18)

then we can see that this is a driven harmonic oscillator, with a nonlinear restoring force

(spring constant). Alternatively, it can be viewed as a pendulum with a forcing function, but

the length of the pendulum is not constant. Both of these views imply a frequency which is

not constant within one period of the motion: An obvious problem for a Fourier spectral

decomposition. Let us now examine Duffing’s equation for ε = −3.0, γ = 1.5, ω = 2.5,

shown in Fig.3.3.

The spectral treatment of Duffing’s equation produces superharmonics in the frequency

spectrum as expected. In order to apply the Hilbert spectrum method, the signal is required

to have no positive minima or negative maxima, otherwise the instantaneous frequency will

spike to infinity. Therefore, the time series needs to be sifted into intrinsic mode function

(IMFs). This is done by first fitting a spline to all the maxima and minima of the function,

S max(t), S min(t). The mean of those two splines is subtracted from the time series . This

process is repeated using the until the IMFs in the frequency range of interest have been

extracted. The method is illustrated in Fig. 3.4. The sifting is complete in that no information

about the time series is lost. The difference between the original signal and the sum of its
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Figure 3.3: The time-integrated Duffing’s equation, Fourier spectrum and phase portrait.
The spectrum displays the generation of superharmonics. The phase-portrait displays the

nonlinear behavior where the attractor approaches but does not remain at fixed points or in
limit cycles.



CHAPTER 3. SIGNAL PROCESSING TECHNIQUES 44

mode functions is on the order of computational precision, where the example is done in

single-precision arithmetic.

The sifting of the signal is thus a way of examining the different intrinsic frequencies

of the fluctuating quantity, whereas each mode function lives near an average frequency.

The IMF which is most strongly correlated with the original signal is the one which best

describes the behavior.
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Figure 3.4: The sifting of the function f (t) = 3 sin(2π f1t) + sin(2π f2t) with f1, f2 = 5, 18 Hz.
Minima, maxima and mean splines are plotted as (r,g,b). IMFs are sorted in increasing
frequency, and recover the correct amplitude and frequency of the model. The error is

negligible.

Taking the time series from Duffing’s equation, the modal decomposition and Hilbert-

Huang spectrum are displayed in Fig.3.5. The Hilbert spectrum contour is a sum of instan-

taneous frequencies in time, similar to a spectrogram. The ‘energy’ in time is calculated

as

IE(t) =

∫
H(ω, t)dω (3.19)
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and measures the total signal energy contribution from all spectra at a given time point.

Early in the Duffing’s time series, the attractor displays asynchronous orbits near the

fixed points in phase space with two characteristic frequencies when the trajectory is close

and far from the fixed points. It is this time where positive minima and negative maxima

exist, causing a split in the IMFs. Once the attractor enters a large-radius limit cycle, the

first IMF is sufficient to describe the evolution of the attractor.
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Figure 3.5: The modal decomposition of Duffing’s equation.

3.6 Bi-Orthogonal Decomposition

When multiple space-time points are used for measuring fluctuations in a plasma, the

observed fluctuations can be decomposed into spatial and temporal modes Xk and Tk,

respectively, with the bi-orthogonal decomposition. The seminal paper on the analysis is

given by Dudko de Wit et. al. [22], and has been used on the JET [67] and HT-7 [91].

The amplitude of each spatio-temporal mode is given by a “singular value”, σk. Using the
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bi-orthogonal decomposition Eq.3.20, the density fluctuations in CTX measured by the

Polar Imager have been decomposed into mutually orthogonal spatial mode functions and

their respective mutually orthogonal temporal variation.

n(x j, ti) =

K−1∑
k=0

σkXk(x j)Tk(ti) (3.20)

Here, K = Min{M,N}, where M is the number of spatial measurement points, N is the

number of time points. The orthogonality relation is given as

N−1∑
i=0

Tk(ti)Tl(ti) =

M−1∑
j=0

Xk(x j)Xl(x j) = δk,l (3.21)

The decomposition of this equation is done via

AXXk = σ2
kXk , AX = nT n (3.22)

AT Tk = σ2
kTk , AT = nnT (3.23)

where the Singular Value Decomposition is used to extract the ‘eigenvalues’.

While the decomposition of Eq.3.22 solves for σ2
k , the additional constraint on the sign

of σk comes from the isomorphism

nXk = σkTk (3.24)

which is necessary for the proper reconstruction of the observation.
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3.7 Lyapunov Spectrum

The Lyapunov characteristic exponent of a system provides the rate of divergence of nearby

trajectories in phase-space. In a dynamical system, the existence of a positive Lyapunov

exponent is the hallmark of chaos [1, 81]. One of the most familiar nonlinear dynamical

systems exhibiting chaos is the Lorenz system [59], which is a system of three coupled

nonlinear ordinary differential equations for (ẋ, ẏ, ż) ( Eq.3.25). The Lorenz system, existing

in a three-dimensional phase space, has three Lyapunov numbers λi = {1.5, 0.0,−22.5}

obtained analytically.

dx(t)
dt

= σ[y(t) − x(t)]

dy(t)
dt

= −x(t)z(t) + rx(t) − y(t)

dz(t)
dt

= x(t)y(t) − bz(t) (3.25)

The Lorenz system was originally derived from a finite mode truncation of the partial

differential equations describing thermal convection in the Earth’s lower atmosphere. When

the Lorenz system is integrated in time, the time series of one of the variables (x, y, z) can be

used to numerically calculate the Lyapunov spectrum [28]. The three-dimensional phase

portrait of the Lorenz attractor is provided in Fig.3.6, along with a single realization of the

variable x and it’s associated power spectrum. The Lorenz x time series presented here has

an auto-correlation time of τcC(0)−1
∫

C(τ)dτ ≈ 0.3 s, shorter than the Lyapunov time of

λ−1 ≈ 0.667s by slightly more than a factor of two. The power spectrum admits a power-law

decay above f ≈ 4 Hz. The method for calculating the Lyapunov spectrum projects the time

series in a dE dimensional space R1 → RdE , forming a sequence of vectors, rather than a

time series. A time series x(t) = x[iτ], {i : i = 1, 2, . . . , n} exists in one dimension. This time

series is projected by the time-lag method to create an embedded set of vectors, illustrated
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Figure 3.6: The Lorenz system (top) is a ‘strange attractor’. The parameters are
r = 45.92, b = 4, σ = 16. One sample time series x(t) from the Lorenz system is displayed,
as well as the power spectrum for a time record of 10,000 time points. The time step for

Runge-Kutta integration is 0.01.
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by R1 → R3 as

1

2

3

4

5

6

→

1 2 3

2 3 4

3 4 5

4 5 6

(3.26)

transforming a length n vector to a set of n− dE + 1 sets of dE coordinates. We now calculate

the ‘neighbors’ of vector xi such that the condition

||x j − xi|| ≤ r (3.27)

is satisfied. Here, xi = {xi, xi+1, . . . , xi+dE−1} is a given set of dE coordinates (a row in

the embedded set of Eq.3.26). The embedding of the time series results in a ‘recurrence

plot’ [27, 24, 95] for the system. This is a (n − d1 + 1) × (n − dE + 1) array where the j’s

satisfying the inequality condition are given a 1, else 0. Recurrence plots of periodic systems

display long lines parallel to the diagonal (sinusoid). If there are short lines parallel to the

diagonal, then in that embedded dimension a periodicity exists for a short time, and then

diverges. This is true for an attractor which exists near a fixed point in phase space, and then

leaves the region of that fixed point.

Once the series has been embedded, neighbor points in this space within a dE dimensional

sphere are found with a search algorithm (Appendix D), resulting in the set S i(r), which

are the positions in the rows of the recurrence plot where there is a 1. We then want to

determine the dE × dE matrix Ti which describes how time evolution sends small vectors

around xi to small vectors around xi+1. This is done with the matrix equation

Ti(x j − xi) ≈ x j+1 − xi+1 (3.28)
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Figure 3.8: Recurrence plots for the Lorenz system embedded in 1, 2 and 3 dimensions
(a-c). For embedding dimension dE = 1, 2 there is a ‘checkerboard’ pattern. For embedding

dimension dE = 3, there are long lines parallel to the diagonal.
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where T has the form

Ti =



0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

...

a1 a2 a3 . . . adE


where the last row is obtained from a least-squares solution

∑
j∈S i(r)

[ dE−1∑
k=0

ak+1(x j+k − xi+k) − (x j+dE − xi+dE )
]2

= min (3.29)

This will yield a set of Ti,Ti+1, . . . matrices. We then determine, successively, orthogonal

Qi matrices and upper-triangular matrices Ri with positive diagonal elements (making the

decomposition unique), such that Q(0) is the unit matrix, and

T1Q(0) = Q(1)R(1),

T2Q(1) = Q(2)R(2),

. . . ,

T1+ jQ( j) = Q( j)R( j),

. . .

The Lyapunov exponents are obtained by the sum of the diagonal entries in R.

λk =
1
τK

K−1∑
j=0

ln R( j)kk (3.30)

This analysis has been performed with one time series, representing an observed mea-

surement, from the Lorenz system generated by fourth-order Runge-Kutta time integration.

The result of the analysis, displayed in Fig.3.9, 3.10, shows the convergence of the Lorenz
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system to the correct values for embedded dimension dE ≥ 3. When the system is embedded

in four or more dimensions, spurious negative exponents are calculated, indicating that the

dimensionality of the system is 3 (dashed circles Fig. 3.10). The single positive exponent is

a persistent feature and a direct indication of chaos.
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Figure 3.9: The convergence of the Lyapunov spectrum for the Lorenz system. The
convergence is poor for dE = 2, because the system is fundamentally three-dimensional.

When dE > 3, spurious negative exponents are created between the correct lowest exponent
and zero.
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3.8 Inverting the Continuity Equation

When density measurements are taken at multiple spatial points, the plasma flow can be

determined by the time-rate of change of density and the continuity equation,

∂N
∂t

+ ∇ · (Nv) = 0 (3.31)

where N = 〈n〉δV is the flux-tube integrated density, and v = (B × ∇Φ)/B2. The continuity

equation becomes
∂N
∂t
−
∂Φ

∂ψ

∂N
∂ϕ

+
∂Φ

∂ϕ

∂N
∂ψ

= 0 (3.32)

The right-hand side of this equation can be supplemented with sources by ionization, as well

as losses.

In CTX, the polar imager measures density N(ϕ, ψ, t), and therefore the spatial and

temporal derivatives of N can be easily calculated. This reduces the problem to anAx = b

problem of the form (
−

∂

∂ψ

∂n
∂ϕ

+
∂n
∂ψ

∂

∂ϕ

)
Φ = −

∂N
∂t

(3.33)
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Figure 3.11: A model stream function Φ for advecting a density field. The model is defined
on the domain (ϕ, y) where y is normalized magnetic flux y = ψ/ψ0.

where the operator (. . .) needs to be inverted. This is done using a basis function expansion,

and solving for Φ(ϕ, ψ, t) in a least-squares sense at each time point

Φ(ϕ, ψ) = C
ψ − ψmin

ψmax − ψmin
+

∑
n

Dn sin
(
nπ

ψ − ψmin

ψmax − ψmin

)
+

∑
m,n

[
Am,n sin(mϕ) + Bm,n cos(mϕ)

]
sin

(
nπ

ψ − ψmin

ψmax − ψmin

)
(3.34)

with calculated coefficients Am,n, Bm,n representing convective cells and Dn,C representing

zonal flow and rigid rotation, respectively. Once Φ has been calculated, the velocity which

caused the motion from t to t + δt is obtained from spatial derivatives.

As a test of the accuracy of the inversion, a model stream function has been prescribed in

Fig.3.11. This stream function acts to advect a model density function n(ϕ, ψ) in time. Rigid

rotation is included in this model. By using the time evolution of the density (Fig.3.12), the

stream function which caused that motion is obtained by inverting the continuity equation in

a least-squares sense. The time-rate of change of density displays which regions in (ϕ, ψ)

space there is a gain and loss of density. The long-time modification to the density field is

shown in Fig.3.13 where the effects of the flow field can be easily seen.

By inverting the continuity equation for Φ, the model stream function, solution, and
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Figure 3.12: Three time steps of the advection of the density field. Vector flow fields are
overplotting to indicate the direction of motion. The approximate time-rate of change of

density from the time-centered finite difference.

  
 

 

Figure 3.13: The density field after 10 time-steps of advection.
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Figure 3.14: The model, solution, and absolute error for the inversion of the continuity
equation. The relative 2-norm error integrated over the domain is about 2%.

error between the model and solution are shown in Fig.3.14. The absolute point-wise error is

relatively small, having amplitude 0.1 on a stream function with amplitude 40. The relative

2-norm error
∑

i, j |Φ− Φ̂|/|Φ| is typically 2-5%, showing good agreement between the model

and the solution. When using real data, it is necessary to low-pass filter the time records to

eliminate the jitter associated with high frequency noise. The high frequency noise corrupts

the time-rate of change of density, leading to a large ∂N/∂t not arising from cross-field

motion.
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3.9 Spectral Energy Transfer

In a rotating plasma, as in CTX, the direction of spectral energy flow can be calculated from

two closely spaced probes separated in an upstream/downstream orientation [71, 72]. This

method and modifications of this method [48, 9] have been used in toroidal devices [89, 90,

61, 70] for investigating the direction of nonlinear energy transfer. The model equation for

the dynamics is given as a simple wave equation

∂φ(k, t)
∂t

= ΛL(k)φ(k, t) +
1
2

∑
k1,k2

k=k1+k2

ΛQ(k1, k2)φ(k1, t)φ(k2, t) (3.35)

ΛL(k) = γ(k) + iω(k) (3.36)

where the linear coefficient ΛL represents the growth and advection of the wave, and ΛQ

is the quadratic coupling coefficient. We would like to extract the linear and nonlinear

coefficients, and this will be done by a finite-difference approximation for the time derivative.

We represent φ(k, t) by a amplitude and phase

φ(k, t) = |φ(k, t)|eiΘ(k,t) (3.37)

and

∂φ(k, t)
∂t

= lim
τ→0

(
|φ(k, t + τ)| − |φ(k, t)|

τ

1
|φ(k, t)|

+ i
Θ(k, t + τ) − Θ(k, t)

τ

)
φ(k, t) (3.38)

Using Eq.3.37 in Eq.3.38, we have

φ(k, t+τ) =
ΛL

kτ + 1 − i[Θ(k, t + τ) − Θ(k, t)]
e−i[Θ(k,t+τ)−Θ(k,t)] φ(k, t)+

1
2

∑
k1,k2

k=k1+k2

Λ
Q
k (k1, k2)τ

e−i[Θ(k,t+τ)−Θ(k,t)]×φ(k1, t)φ(k2, t)

(3.39)

It is Eq.3.39 which is modeled in Fourier space as a ‘black-box’ nonlinear system. The

input φ(k, t) and output φ(k, t + τ) represent spatially varying functions measured at two
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different times, where τ is the small time change between the measurements. To see how

this equation is derived, see Appendix C.

To simplify, and put a general mathematical context, we redefine

Xk = φ(k, t) Yk = φ(k, t + τ),

Lk =
ΛL

kτ + 1 − i[Θ(k, t + τ) − Θ(k, t)]
e−i[Θ(k,t+τ)−Θ(k,t)] ,

Qk1,k2
k =

Λ
Q
k (k1, k2)τ

e−i[Θ(k,t+τ)−Θ(k,t)] (3.40)

where k = k1 + k2. The equation Eq.3.39, using the symmetry relation can now be written

as1.

Yk = LkXk +
∑
k1≥k2

Qk1,k2
k Xk1 Xk2 (3.41)

The terms Lk and Qk1,k2
k are called the linear and quadratic transfer functions. Remember

that Yk represents Xk after Xk has been ‘evolved’ through a system with linear evolution

and nonlinear mixing of spectral components. By multiplying Eq.3.41 by X∗k and ensemble

averaging, we get

〈YkX∗k〉 = Lk〈XkX∗k〉 +
∑
k1≥k2

Qk1,k2
k 〈X∗k Xk1 Xk2〉 (3.42)

and by multiplying by X∗k′1 X∗k′2 we get

〈YkX∗k′1 X∗k′2〉 = Lk〈XkX∗k′1 X∗k′2〉 +
∑
k1≥k2

Qk1,k2
k 〈Xk1 Xk2 X∗k′1 X∗k′2〉 (3.43)

The final term (fourth order moment) can be approximated as 〈|Xk1 Xk2 |
2〉 by neglecting

components with (k1, k2) , (k′1, k
′
2). This is referred to the as the Millionshchikov hypothesis.

It is widely used in weak and strong turbulence, but is only valid when the fluctuations are

close to a Gaussian distribution. In CTX, the floating potential fluctuations are close to

1It is only necessary to compute these quantities for k ≥ 0 and replace 1
2
∑

k1,k2
with

∑
k1≥k2

due to the
symmetry Qk1,k2

k = Qk2,k1
k . It is also sufficient to compute on a restricted domain due to the symmetry relations

Xk = X−k∗ and Qk1,k2
k = [Q−k1,−k2

−k ]∗.
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Gaussian, with skewness ≤ 0.25, making this a valid approximation.

The linear and quadratic transfer functions can now be solved for, since

Lk =
〈YkX∗k〉 −

∑
k1≥k2

Qk1,k2
k 〈X∗k Xk1 Xk2〉

〈XkX∗k〉
(3.44)

and

Qk1,k2
k =

〈YkX∗k1
X∗k2
〉 − Lk〈XkX∗k1

X∗k2
〉

〈|Xk1 Xk2 |
2〉

(3.45)

This represents two equations and two unknowns, which is solved for iteratively. The initial

guess on the first iteration is Eq.3.44 neglecting the quadratic term. Once the solution

is converged, the linear and quadratic coupling coefficients are given by Eq.3.42 where

ei[Θ(k,t+τ)−Θ(k,t)] ≈ 〈YkX∗k〉/|〈YkX∗k〉|

As a test of the method, we define a linear and quadratic transfer function

Lk = 1 − 4
k2

k2
N

+ i0.8
k

kN

Qk(k1, k2) =
i

5k4
N

k1k2(k2
2 − k2

1)
1 + k2/k2

N

(3.46)

where k = k1 + k2, kN is the Nyquist frequency, and i =
√
−1 shown in Fig.3.15. These

model transfer functions represent the linear dispersion of a wave, and nonlinear coupling

coefficient of the same form as the Hasegawa-Mima equation where high-k modes are

coupled more strongly than low-k. A gaussian input signal of 150,000 points is passed

through a black box five times using the output of the jth box as the input to the j + 1st box,

creating a non-Gaussian signal which has been evolved linearly and nonlinearly. We use Xk

and Yk as the input and output of the 5th box. The method to solve for Lk and Qk1,k2
k outlined

above has been used to solve for the transfer functions. The convergence of Qk1,k2
k is shown

in Fig.3.16, and the results are shown in Fig.3.17.

Although the equation is given as a rate of change in time, we will be switching

∂/∂t → ∂/∂x, or τ→ ∆x, and calculating the temporal growth and dispersion as a function
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of frequency. In other words, rather than using a diagnostic with high spatial resolution and

comparing the fluctuating field at two times, we use two diagnostics with high temporal

resolution, and compare the fluctuating signal at two points. This is valid when the wave

dispersion k(ω) is approximately linear, and an increasing function of frequency.

3.10 Amplitude Correlation

The method for determining spectral energy transfer calculates the net transfer of spectral

energy over the entire spectral region where there is significant power. Another method,

the “amplitude-correlation” technique [20], allows selection of power bands of interest to

investigate nonlinear coupling between portions of a turbulent spectrum. The concept is

simple in that fluctuations are assumed to posses a time-evolving waveform which either

increases or decreases in frequency or wavenumber. We will use a superposition of wave

pulses to conduct a Monte Carlo simulation to determine in an average sense if a high or low

frequency wave lags or leads a low frequency wave [68] (i.e. if an injection pulse evolves to

a higher or lower frequency).

Consider the model pulse

Ψ(t) =
1
2

sin(ω1t)e−[(t−ζ)/∆]2
+

1
2

sin(ω2t)e−[(t+ζ)/∆]2
(3.47)

and a time series which places this model pulse at time tk where tk is a uniformly distributed

random time

Φ(t) =

N−1∑
k=0

aΨ(t − tk) (3.48)

where N = µ(tmax − tmin)/nt and µ specifies the ‘pulse density’. An example pulse for

a = 1, ζ = −25, ∆ = 20, µ = 0.1 is shown in Fig.3.18 and displays a low to high frequency

evolving pulse.

We wish to determine which frequency pulse happens first by selecting bands in the
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Figure 3.18: The model pulse which increases in frequency, full signal, and associated
ensemble power spectrum. The model pulse has the low frequency leading the high

frequency.
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spectrum, and comparing the two signals associated with those bands. Once the model pulse

has been created, a moving window of realizations of Φ(t) are compared. This is done by

first band-passing the realization into two frequency domains of interest, here being bands

labeled as dark and light grey (a),(b) in fig 3.20. Each individual realization is band-passed

selecting the bands of interest and then back-transformed to the time domain, creating two

time series from the realization. Then, the signals associated with those bands are low-pass

filtered to extract the slowly varying amplitude information (see Fig.3.19). Those low-passed

signals are cross-correlated. This is done for each realization of the time series Φ, and the

ensemble cross-correlation function determines which band lags the other.
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Figure 3.19: The model pulse Ψ and one realization Φ(i) of the full signal Φ(t). The
band-passed components of the realization are shown, as well as the low frequency

amplitude variation (dashed red).

The results of the amplitude correlation analysis on the model pulse shown in Fig.3.18

are presented in Fig.3.20. The method accurately predicts the lag between pulses (2ζ = 50),

where cross-correlation between high and low frequency components 〈CH−L(τ)〉 having a

negative lag correctly indicates that low frequency leads high frequency. The amplitude is
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also quite near the predicted value of the cross-correlation amplitude of max[〈 CH−L 〉] =

0.153] in Ref. [68].
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Figure 3.20: The frequency bands of interest and the high-low ensemble cross-correlation
function. The high-low correlation function having a negative lag time indicates that the

low frequency leads the high frequency.

A simple test of the validity of this result is to switch which frequency leads. The result

from the same analysis is shown in Fig.3.21. Here, a different random number generation

‘seed’ has been used, otherwise the cross-correlation function will be a mirror image of that

in Fig.3.18.
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Figure 3.21: The reverse of the model pulse with the low frequency lagging the high
frequency and associated spectrum. The cross-correlation function now displays a positive

lag time at indicating that the low frequency lags the high frequency in time.



Chapter 4

Observation and Characterization of

Turbulence in CTX

High density, turbulent plasma discharges in CTX are created in the manner of Ch.2 and

analyzed by the methods detailed in Ch.3. The turbulent fluctuations are investigated

with respect to both local and global paradigms. Locally, single-point measurements of

potential and density provide the time series for auto-correlation analysis and ensemble

spectra. Two-point measurements are used to measure the parallel wavenumber along a

magnetic field line, as well as the azimuthal mode numbers of the spatial structure of the

turbulence. The analysis of density fluctuations measured by the polar imager is done with

the bi-orthogonal decomposition, and describes the structure and dynamics of the plasma on

the global scale. The stream function, which determines the flow of plasma, uses spatial and

temporal derivatives of density measurements obtained by the polar imager, and determines

the global structure of the potential. The Lyapunov exponent analysis performed on density

fluctuations investigates the chaotic nature of the temporal variation of the global structures

in the plasma. Finally, the analyses for nonlinear mode interaction and power transfer are

performed on turbulence measurements in CTX.

66
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4.1 Single-Point Measurements

Using a movable probe, single-point measurements of density and potential have been taken

across the accessible radius of CTX. Turbulence measurements motivate statistics which

are “ensemble averaged” over a time where the basic plasma parameters and profiles are

relatively stationary. Because of the high reproducibility of plasma discharges in CTX

ensemble averages of fluctuations can be calculated over an entire discharge (∼0.7 s) and

over multiple discharges, creating well-converged statistics.

4.1.1 Auto-Correlation Function

The auto-correlation function in time for density fluctuations, and its associated ensemble

are displayed in Fig.4.1. The function 〈C(τ)〉 is seen to decay quickly, reducing in amplitude

to half in approximately 20 microseconds. Note that the function is not purely decaying, and

reverses sign twice within a lag time of 200 microseconds. This sign reversal is a first indica-

tion of periodicity, or quasi-coherence in the time series. The ensemble auto-correlation for

potential is also displayed in Fig.4.1, and displays a stronger periodic character, indicating

that the potential fluctuations may be more coherent, with a more pronounced spectral

peak. The auto-correlation time τc for density and potential are approximately 50 µs and

60 µs, respectively. The auto-correlation function for potential fluctuations measured across

the plasma radius is shown in Fig.4.2, and computed over a much longer time window,

extending the τ-axis. The variation in the auto-correlation function across the accessible

plasma radius indicates two modes at a high and low frequency with long-range correlation.

The low frequency mode which exists near 1/τ ∼ 1.6 kHz is most strongly correlated closer

to the center of the plasma where the heating resonance exists. The higher frequency mode

near 1/τ ∼ 2.5 − 3 kHz is more strongly correlated at the plasma edge. The high frequency

mode has a radial dependence on its frequency near the edge of the device (L > 57 cm),

indicating a slight shear in the rotation.
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4.1.2 Ensemble Spectrum

Using a single floating potential probe, and systematically inserting the probe from the

plasma edge closer to the heating location, the ensemble spectrum of the fluctuating potential

is measured. The ensemble spectra of potential across the plasma radius from L = 44 to 58

cm is given in Fig. 4.3, where each spectral trace represents an ensemble over hundreds to

thousands of realization and converged over multiple plasma discharges. The spectrum can

be seen to follow a power-law for f ≥ 10 kHz with a trend approximated by f −5. There also

exist spectral peaks in the ranges f ∼ 1 − 2 kHz and f ∼ 4 − 6 kHz, which will later be

identified as quasi-coherent m = 1, 2 modes, respectively, where m is the azimuthal mode

number of potential fluctuations.

The spectra of density fluctuations are also measured by the same single-probe technique.

Although both the potential and density exhibit power-law trends, the density follows a

more shallow trend of f −3. The interpretation of these differing power-law slopes will be

discussed in Sec.4.8
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Figure 4.3: The ensemble-averaged floating potential spectra taken across the plasma radius,
L. The dashed line indicates f −5 for reference.
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ñ
∗ 〉

(A
U

)

Figure 4.4: The ensemble-averaged density spectra taken across the plasma radius, L, by a
Langmuir probe. The dashed line indicates f −3 for reference.

4.2 Two-Point Measurements

Using two or more diagnostics, cross-correlation, coherence and phase are the statistical

tools for determining the correlation length and time of the fluctuations, as well as the

coherence and spatial structure of quasi-coherent modes. The spatial structure interpretation

is dependent on the distance, or periodic angle difference, between the probes. The phase

shift in radians satisfies α = k∆x, where k is the wavenumber, and ∆x is the distance

separating the probes. When azimuthal mode number m is used to describe a mode, then

that mode posses a sin(mϕ), periodic structure.

4.2.1 Parallel Wavenumber

When two diagnostics are positioned on a field-line, the parallel wavenumber can be

measured by computing the phase shift, and the frequency integrated cross-phase. Two

probes are used separated by ∆s ≈ 35 cm, the separation on a field line. One probe is

fixed at L = 50 cm, and another probe moves radially from L = 60 cm to L =45 cm

(∆L = [10→ −5] cm). Examination of floating potential fluctuations when two diagnostics
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are aligned along the field shows very little difference between the signals themselves, the

signals have a zero-lag. There is significant cross-coherence up to 40 kHz Fig.4.5. Although

the signals may appear identical, the cross-phase and frequency-integrated cross-phase are

still necessarily calculated. The integrated cross-phase weights the phase function to the

coherence, providing a more accurate average cross-phase over the entire spectrum. The

mean cross-phase is taken at the maximum cross-coherence. The integrated cross-phase

〈α1,2〉
∫ = k‖∆s between these two diagnostics has been calculated over the duration of each

discharge, and displays k‖ ≈ 0. The cross-phase at maximum coherence also confirms

k‖ ≈ 0, but does display some phase shift when ∆L , 0. The phase shift for determining k‖

is displayed in Fig.4.6.
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Figure 4.5: The ensemble cross-coherence for diagnostics positioned near the same
field-line. The color indicates the radial location of the moving probe.

4.2.2 Correlation Length

Using probe pairs separated by a distance ∆x, cross-correlation of fluctuations in a rotating

plasma can yield the correlation length in the laboratory frame. The cross-correlation

function is illustrated in Fig.3.1. The cross-correlation function for probes separated by

∆ϕ = 9◦ (∆x ≈ 8 cm) is shown in Fig.4.7. There is very strong correlation 〈C1,2〉 ≥ 90%.



CHAPTER 4. OBSERVATION AND CHARACTERIZATION OF TURBULENCE 72

Inegrated Phase Value

46 48 50 52 54 56 58 60
L (cm)

-!

-!/2

0

!/2

!

<
"

1
,2
>

Phase Value

46 48 50 52 54 56 58 60
L (cm)

-!

-!/2

0

!/2

!

<
"

1
,2
>

〈α1,2〉R
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∫ = k‖∆s across the accessible plasma radius is

essentially zero, as expected from interchange modes. The mean cross-phase shows that the
phase shift is zero for ∆L = 0 at L=50 cm.

The lag time is τLag ≈ 15 µs, indicating the fluctuations propagate at vϕ ≈ 6 km/s. The strong

correlation indicates that very little turbulence exists on these spatial scales to decorrelate

the structures passing between the probes.
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Figure 4.7: The ensemble auto-correlation functions and cross-correlation between probes
separated by ∆x = 8 cm and ∆x = 78.5 cm. The auto-correlation functions are essentially
identical. Strong correlation is found at ∆x = 8 cm, indicating that very little turbulence

exists on this spatial scale. The lag time increases in proportion to spatial separation
indicating rigid rotation at radius L = 50 cm.

Using probes separated by ∆ϕ = 9◦, 90◦, 180◦, the correlation length of fluctuations has

been measured. As the probe separation is increased, the lag time τlag increases in proportion

(Fig.4.7), representing a constant azimuthal propagation speed of vϕ ≈ 6 km/s. The correla-

tion amplitude of the fluctuations decreases with probe separation as exp(−∆x/λc), where
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λc ∼45 cm, or 14% of the device circumference. The short correlation length relative to

circumference represents the incoherent structures evolving quickly compared to a rotation

period around the device. These incoherent structures decorrelate in a time approximately

λc/vϕ ≈ 75 µs.

4.2.3 Azimuthal Mode Structure

When probes are separated azimuthally by ∆ϕ, azimuthal modes can be identified by their

phase shifts satisfying 〈α1,2〉 ∼ m∆ϕ for m = 1, 2, . . .. The results of cross-coherence

and phase are shown in Fig.4.8. One potential probe was fixed at L = 50cm, and probes

situated at azimuthal separations ∆ϕ = π/2, π were inserted into the plasma (∆ϕ = π/2

shown). The color of the trace indicates the location of the moving probe. The azimuthal

coherence, calculated over thousands of realizations of each signal, reveals two quasi-

coherent modes in the plasma. The dominant mode is found to have m ∼ 1, as indicated

by the value of the cross-phase where there is significant coherence. There also exists a

sub-dominant m ∼ 2 mode with weaker coherence. The variation in cross phase with radial

position is indicative of a ‘spiral’ character to the mode structure and this feature can also be

seen in the spatial mode structure returned by the bi-orthogonal decomposition of density

fluctuations in Sec.4.6. It is significant that with probe separation of ∆ϕ = π/2 (∆x ∼ 80

cm) there is essentially zero coherence above f ∼ 6 − 8 kHz. The turbulent structures at

this frequency have completely de-correlated, and it is above this frequency range where the

power spectrum assumes a full power-law decay.

The polar imager can be used to measure density fluctuations when the repeller grids are

biased negatively to repel electrons (Sec 2.2.3). With repeller voltages exceeding ∼ −80 V,

the density fluctuations in the bulk plasma and the fluctuations of the polar current are

strongly correlated (Fig.4.9). When the Langmuir probe and a polar detector are on the same

field-line, the ensemble cross-correlation function is peaked at a zero-lag, with amplitude

〈Cñ,Ipolar〉 ≈ 50%. Detectors separated azimuthally are also correlated, but with a lag time
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shift indicates propagation in the −ϕ̂ direction.
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proportional to the azimuthal separation. Furthermore, the correlation amplitude decreases

with azimuthal separation, as expected in a turbulent plasma. Therefore, when biased

negatively, the polar imager can be used to image the density fluctuations in the entire

plasma with good spatial resolution and excellent temporal resolution.
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Figure 4.9: Experimental configuration and ensemble cross-correlation functions between
density measured in the bulk plasma and polar current biased to measure density.

The correlation of density fluctuations at the pole between detectors is provided in

Fig.4.10. The cross-correlation of density fluctuations reveals that plasma rotation occurs in

the −ϕ̂ direction, as indicated by the positive lag time for a detector situated at ϕ < ϕre f . By

plotting the lag time as a function of detector separation ∆x = L∆ϕ, the rotation velocity is

given as the inverse of the slope. It is seen that the velocity increases with increasing radius,

with the frequency f = v/2πL nearly constant around 1.5 kHz.

To view the structure of the density fluctuations, 11 polar detectors at one radial location

have been selected and plotted as a contour in time and azimuthal angle shown in Fig.4.11(a).

The contour plot readily displays the plasma rotation in the −ϕ̂ direction. The angled ‘stripes’

represent coherent rotating structures, and the slope of the stripe is the rotation rate, here

approximately 2 kHz. When the stripes are singly-periodic in angle, then the mode structure

is m = 1, the lowest mode number in the periodic system. In Fig.4.11, a strongly coherent

m = 1 mode is seen at time t = 0.133 s. At other times, higher mode structures are dominant.

Fourier wavenumber analysis determines the dominant azimuthal mode number at each time
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Figure 4.10: Experimental configuration and ensemble cross-correlation functions between
density measured at multiple points from the polar imager at L = 30, 35 cm. The correlation
amplitude decreases with separation of diagnostics. The positive lag between the reference

detector and the others at decreasing angle indicates rotation in the −ϕ̂ direction. The
velocity is faster on the outboard side, giving a broad rotation rate near 1.5 kHz.
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point, displayed in Fig.4.11(b). Modes number as high as m = 5 can be dominant, but the

higher mode numbers are dominant for shorter durations. The variation in the dominant

azimuthal mode number represents the merging (m decreasing) and splitting (m increasing)

of coherent structures, or vortices, of plasma density.
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Figure 4.11: (a) Measurements of plasma density in time and azimuthal angle as well as (b)
the dominant azimuthal mode number m. The angular stripes show plasma rotation at

f ≈ 2 kHz.

4.2.4 Comment on Transport

The measurements of auto- and cross-correlation functions and azimuthal mode structure are

ensemble quantities, converged over the entire duration of a discharge. One may ask, what

is the relationship between the fluctuations in potential and plasma density? This question

addresses the fluctuation-induced particle flux caused by E × B motion [75, 13]. The radial

E × B particle flux is1

Γr = ñṽr = ñ
Ẽϕ

B
= −

1
B

ñΦ̃kϕκñ,Φ̃ sin(αñ,Φ̃) (4.1)

1In these references the cross-phase convention switched conjugate, hence the negative sign.
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which depends on the RMS values of fluctuating density and potential, the potential

wavenumber Ẽϕ = −∇Φ̃ = ikϕΦ̃, mutual coherence κñ,Φ̃, and sine of the angle. These

quantities are calculated in an ensemble sense. Therefore, when a positively going density

fluctuation is followed by a positively going potential fluctuation where −π/2 < αñ,Φ̃ < 0,

the radial flux Γr is positive and the density fluctuation is transported to the outboard,

low-field side of CTX (Fig.4.12). Using reasonable parameters2 at L = 50 cm, the nu-

merical radial particle flux is near 1017m−2s−1, which is below typical measurements in

TCV [32] (Γr ∼ 1020m−2s−1) which has much higher density, but nearer TORPEX [30]

(Γr ∼ 1018m−2s−1), which has a radial variation in the sign of the flux.
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Figure 4.12: A schematic displaying the outward convection of a density perturbation by
radial fluctuation induced flux. Signal samples of fluctuating density and potential (arb.

units). Also, the ensemble cross-correlation indicating that positive potential perturbations
lag higher density perturbations.

The transport is maximized when the phase is αñ,Φ̃ = −π/2. When the density fluctu-

ations and potential fluctuations are exactly in phase or out of phase, then no fluctuation

induced transport occurs, and the density circulates around potential contours without net

transport. This is a convective cell which causes circulation, but not large amounts of
2B ∼ 0.014T, ñ ∼ 3 × 1015m−3 × 20%, Φ̃ ∼ 10 V × 50%
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particle transport. The tracked cross-phase in time, Fig.4.13, indicates that this relation is

true on average, but deviations from the 90◦ cross-phase value occur often. The ensemble

cross-correlation function also agrees with the cross-phase, as 〈Cñ,Φ̃〉 has a positive lag,

with coherence κñ,Φ̃ ∼ max[〈Cñ,Φ̃〉] ∼ 50%. The asymmetric probability density function

(pd f = (n − n̄)/var(ñ)) of edge density fluctuations, possessing intermittency with a positive

skewness, also supports these findings. The positive deviation from Gaussian skewness

(Gaussian skewness = 0) indicates that positive density ’spikes’ occur more often in the time

series. The skewness of edge density fluctuations is near +0.25, which is small compared to

typical tokamak ’blob’ transport [96](s5.6), but closer to simulation results of 2D enstrophy

conserving flows [88] having skewness 0.0-0.2. The skewness is increased in the presence of

coherent structures. At the tokamak edge, intermittent transport events are observed through

density fluctuations having skewness ≥ 1 or more. These are large amplitude coherent

density ’blobs’ which may be generated by interchange/ballooning or peeling/ballooning

instabilities [3]. The process which generates these structures, and suppressing the high

heat load associated with these intermittent transport events (ITEs) remains an active area of

research. Inside of the separatrix, the skewness typically drops and can even change sign,

representing rarified density fluctuations being more intermittent.
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α
ñ
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Figure 4.13: The density-potential tracked cross-phase, indicating that, on average, positive
density fluctuations lead potential fluctuations by 90◦. The probability density function for
density fluctuations displaying positive skewness from Gaussian (solid line). The positive
skewness indicates transport of high density perturbations to the outboard edge of CTX.

4.3 Stream Function

The potential structures which cause the plasma motion are dominated by an axisymmetric

negative potential profile, and m = 1, 2 azimuthal modes, as determined by probe measure-

ments in Sec.4.2. This suggests that the stream function which causes the plasma motion

can be calculated by a model assuming low order azimuthal modes. By using multi-time

measurements of the motion of plasma density measured by the polar imager, the stream

function can be obtained by inverting the continuity equation with the model Eq.3.34.

A snapshot of the density evolution and potential is shown in Fig.4.14, and displays a

radially broad density structure near ϕ = π/2. The time-rate of change is also calculated,

and displays that this density structure is becoming more rarified for ϕ > π/2, and becoming

more dense for ϕ < π/2. The structure is moving in the −ϕ̂ direction. The stream function is

then calculated over these three time steps, and displays a smooth, radially broad, m = 1

potential mode.

The stream function calculation is performed over 100 ms with a full two-dimensional

density record digitized at 1 MHz. The mean coefficients of the basis function expansion
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CHAPTER 4. OBSERVATION AND CHARACTERIZATION OF TURBULENCE 82

Am,n, Bm,n,C,Dn averaged over this time gives the mean stream function, and the mean

potential structure. Without allowing rigid rotation, t is found that the plasma motion is

caused predominately by a radially broad negative potential causing rotation ΩR = −∂Φ/∂ψ

in the −ϕ̂ direction at 1-2 kHz. This is in agreement with the observed rotation seen in

Fig.4.11, and probe measurements inside the plasma. When allowing rigid rotation, the

dominant structure is C ≈ −30 V, or rigid rotation at 1.3 kHz.
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structures are radially broad (low n) m = 1, 2, 3 potential modes.
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A test of accuracy is the error from convecting the density ahead in time n(ϕ, ψ, t0)→

n(ϕ, ψ, t0 + 2δt) with Σ(ϕ, ψ, t0), and comparing with the measured density field n(ϕ, ψ, t2).

This difference is typically less than 10%. One cannot advance the density indefinitely,

because the inversion is only accurate on the time scale of which the density is evolving,

typically a few ×δt.

4.4 Fast Camera

The fast camera which has been installed on CTX produces time-integrated collected

light at high frame rates, and with very high spatial resolution. When focused at the

equatorial midplane, the radial resolution is 800 pixels over 40 cm. This provides high radial

wavenumber resolution of 2 pixels/mm.

Due to the limit on the signal-to-noise ratio which decreases with frame rate, the fast

camera is sequenced at 10,000 frames per second. This frame rate represents a tradeoff

between collected light and temporal resolution.

Light intensity collected from the fast camera is well-correlated with density fluctuations,

measured both in the bulk plasma and at the magnetic pole, shown in Fig.4.17. For these

discharges, the fast camera was oriented to view the plasma over the region of ϕ = [90 : 170]

degrees, and across the plasma radius from the terrella to the wall. The Langmuir probe

measuring density was located at ϕ = 145◦, and the polar detectors are also in this range.

When the fast camera is focused on the equatorial plane with a narrow azimuthal angular

span (Fig.4.18), and higher radial resolution, the radial light intensity profile and fluctuation

profile can be calculated. Because the polar imager can view the entire plasma density,

and fluctuations of light are well correlated with bulk density fluctuations and polar current

fluctuations, comparisons between light emission measured by the fast camera and the polar

current profile can be made. It is found that the radial light profile and radial density profile

measured by the polar imager, seen in Fig.4.19, are in excellent agreement. The fluctuations
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Figure 4.17: The cross-correlation between density fluctuations and light intensity (left) and
between light and polar current (right) measured on field lines intersecting the equatorial
plane where the fast camera is viewing. The cross-correlation is maximized at zero lag.

in light intensity peak near the heating zone at L=25 cm, and near L=40 cm, where the

gradient is the strongest.
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Figure 4.18: The view orientation of the fast camera for investigating radial profiles and
radial wavenumber variation.

The density fluctuations are measured to be radially broad by the fluctuations in light

intensity. By calculating the azimuthally integrated light fluctuation intensity in wavenumber

space, it is seen that the radial structure is dominated by the lowest order radial mode.
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Figure 4.19: The radial profile of light intensity, and RMS fluctuation. Radial fluctuation
amplitude is near 5%. The radial light intensity profile agrees with the radial density profile

obtained from the polar imager (dashed).
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Figure 4.20: Spectrograph of radial wavenumber calculated from the the fluctuation images
obtained from the fast camera. The radial wavenumber kR is strongly dominated by the low

wavenumber, indicating that the structures in the plasma are radially broad.
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4.5 Hilbert Modal Decomposition

The modal decomposition based on the Hilbert transform (Sec.3.5) has been used on

tokamaks [44] for investigation density and magnetic fluctuations. When the signals being

analyzed often contain significant nonlinear or harmonic content, the Hilbert spectrum

method can provide a cleaner representation of how the spectrum evolves in time, similar to

a spectrogram. The density fluctuations measured by one of the gridded particle detectors

at the pole of the CTX device has been decomposed by the Hilbert-Huang method and is

displayed in Fig.4.21. The detector signal which is being analyzed is one which was used

in creating Fig.4.11, where a coherent m = 1 mode is formed from higher mode numbers

at times near 0.131 s and 0.133 s. In Fig.4.21, the formation of these coherent modes is

associated with considerable ‘instantaneous energy’ in the time series at times t =0.128,

0.129, 0.131 and 0.133 s. Each time a coherent m = 1 mode is formed the signal energy is

amplified, most easily seen at 0.131 and 0.133 s. Thus the coinciding of increased fluctuation

energy and formation of large-scale structures is a phenomena consistent with an inverse

cascade process.

The mode functions which are extracted from the density fluctuations are displayed

in Fig.4.22 with the same vertical axis. The mode function (IMF) #5 is the most strongly

correlated with the original time series, although IMFs 4-8 are all well correlated with

correlation coefficient greater than 30%. At time t=0.131 s, the large amplitude m = 1 mode

is seen on IMF #4. At time t=0.133 s the large amplitude m = 1 mode is seen on IMFs 5-8.

The Hilbert modal decomposition thus provides a novel representation of a complex

time-varying quantity by a relatively small number of mode functions. The time series

can then be visualized on the intrinsic time-scales present is the record, and existing near

some average frequency. This representation is far simpler than an Fourier decomposition

consisting of thousands of modes, with prescribed frequencies at their respective amplitudes,

discretely spaced in the spectral domain.
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Figure 4.21: The Hilbert spectrum for density fluctuations over the same time as Fig.4.11.
When the low-order azimuthal mode is formed around t = 1.31 and t = 1.33 s, the energy

increases dramatically.

4.6 Bi-Orthogonal Decomposition

The bi-orthogonal decomposition method detailed in Sec.3.6 has been executed on density

fluctuations measured by the polar imager in CTX. As can be seen in Fig.4.23, the amplitudes

of the decomposition are well ordered in amplitude, with the lowest azimuthal mode numbers

being dominant. The spatial mode functions are relatively simple sin(mϕ), cos(mϕ)-like

modes, even though no Fourier basis was prescribed. The radial profile of the spatial

mode functions is broad, and representative of the density profile in the plasma. The

mode functions are returned in sine and cosine pairs with similar amplitudes indicating a

degeneracy or traveling wave in the system. This is a consequence of the E × B rotation of

the plasma.

In contrast to the fairly simple sine and cosine-like spatial modes, the temporal fluctuation

of these modes displays a much more complex variation (Fig.4.24). While the dominant

frequency of the temporal modes increases with mode number, the time sequences are
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Figure 4.22: The Hilbert mode functions for density fluctuations. The 5th mode function is
most strongly correlated with the original data.
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more characteristic of turbulence, with a power-law spectrum and significant harmonic

content. The lowest order temporal mode functions do contain some high frequency content.

The highest frequency amplitude variation of the m = 1 component may in fact be do

to the dynamics of the mode, or to an artifact of the decomposition. Nevertheless, the

non-sinusoidal variation of T0(t) can lead to spectral harmonics, also indicating complex or

nonlinear behavior.

In addition to the spectrum, the phase, or rotation, can be calculated via αk = tan−1(Tk/Tk+1)

where Tk and Tk+1 are the sine and cosine pairs for the mode functions k and k +1. The phase

in Fig.4.24 displays periods of non-steady rotation, as well as coherent rotation indicated by

the periodic sawteeth.

Because the modes are well-ordered and 90% of the amplitude is contained in the

first 9 mode functions (k = 0, . . . , 8) which correspond to the m = 1, 2, 3, 4,DC modes,

the spatio-temporal dynamics of the fluctuations can be re-constructed by summing the

product of the space and time mode functions weighted by their respective amplitudes

n̂(x j, ti) ≈
∑K̂−1

k=0 σkXkTk, where now K̂ = 9. It is found that the truncated reconstruction

well-represents the original data both globally and locally (Fig.4.25). Not only does the

reconstruction well-represent the large-scale fluctuations, but in addition a single polar

detector signal can be compared with the reconstruction of the signal at that same spatial

point. Both the individual polar detector signal and the reconstructed signal display the

same power-law characteristic of f −3, which agrees with measurements in the bulk plasma.

Thus, we find the turbulent fluctuations can be described either as chaotic variation of the

amplitudes of a limited number of simple spatial modes that produce an equivalent local

spectrum or, as will be described in Sec.4.8, as broad power-law spectrum of a very large

number of turbulent structures that transfer energy and mean squared vorticity in both

frequency and wavenumber.
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4.7 Lyapunov Spectrum

The Lorenz system was originally derived from a finite mode truncation of the partial

differential equations describing thermal convection in the Earth’s lower atmosphere. Models

of plasma convection similar to Rayleigh-Bérnard convection have been proposed [77],

where there is a well-known plasma equivalent in flute modes. This has been investigated

experimentally as well in the Helimak configuration [95]. The recurrence plot analysis used

in Sec.3.7 is used to visualize embedded time series. When the embedding dimension is

dE = 1, the recurrence plot pattern resembles the ‘checkerboard’-like pattern, similar to the

Lorenz system embedded in a dimension less than the true dimensionality of the system.

With dimension dE increased to 3, lines parallel to the diagonal emerge, and indicate that

there is periodicity in that chosen dimension. This is an indication of a low-dimensionality

to the nonlinear system.

(a) (b) (c)

Figure 4.26: Recurrence plots for the density fluctuations in CTX embedded in one to three
dimensions (a-c). For embedding dimension dE = 1 there is a ‘checkerboard’ pattern. For

embedding dimension dE = 3, there are long lines parallel to the diagonal.

The same Lyapunov analysis technique introduced in Sec.3.7 has been performed with

density fluctuation data in CTX, measured by the polar imager diagnostic. A single positive

Lyapunov exponent persists as the embedded dimension is increased, indicating a chaotic

time evolution. The value of the positive exponent converges near 25, 000 s−1, corresponding

to a Lyapunov time of 40 µs. This is near the auto-correlation time of the density fluctua-
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tions, approximately 50 µs, and an order of magnitude faster than quasi-coherent density

fluctuations of a few kHz. Similar results have been obtained in a magnetized torus exhibit-

ing interchange modes [95]. Furthermore, above an assumed dimensionality of dE = 3,

smaller negative exponents appear, qualitatively similar to the Lorenz system. This is further

indication of a low-dimensionality to the system, and is in qualitative agreement with the

Hilbert and bi-orthogonal decompositions. The results from the Hilbert method displays

4 mode functions (IMFs 4-8) which are strongly correlated with the original time series.

These are the lower frequency, longer wavelength modes with energy that is amplified when

merging into the lowest order mode in the system. The bi-orthogonal decomposition also

observes these in a complimentary sense, but on the global scale, and finds the spatial modes

to be simple with complex time variation.
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Figure 4.27: Convergence of Lyapunov exponents using 1,000 to 20,000 time points. For
embedded dimension of dE = 2, the spectrum is not well converged. For dE ≥ 3 the

spectrum converges. For dE > 3 exponents exist in the intermediate negative exponent
range for dE > 3, similar to spurious exponents calculated for the Lorenz system.
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Figure 4.28: The Lyapunov spectrum for embedded dimension dE = [2, 5] for the Lorenz
system (left) and density fluctuations in CTX (right). The largest Lyapunov number is

converged near 25, 000 s−1, or a characteristic time of 40 µs. For embedding dimension
dE > 3 small negative exponents are calculated.

4.8 Spectral Energy Transfer

The existence of quasi-coherent structures in background turbulence motivates a study of

the direction of energy flow. Does the fluctuation energy in the small-scale turbulence, on

average, receive energy from the large structures by the splitting of those large structures?

Or, do the smaller turbulent structures merge to form these quasi-coherent modes? It is well

known in fully developed three-dimensional turbulence that energy is the conserved quantity

which flows down the spectrum, from the energy injection scale to larger wavenumber.

The energy Ek flows to larger k, in a forward energy cascade. It is then at a finite k,

the dissipation scale, where the energy is dissipated. This is the Kolmogorov scaling of

Ek ∼ k−5/3. In two-dimensional systems such as soap films, stratified fluids, and strongly

magnetized plasmas a different cascade process takes place [51]. In 2D flows, there are two

conserved quantities: energy and enstrophy (mean-squared vorticity). When both energy

and enstrophy are conserved, for k larger than the energy injection scale, there is a forward

enstrophy cascade with Ek ∼ k−3. For k smaller than the injection scale, the energy takes

on a k−5/3 power-law like in 3D, but the energy flows to lower k, in an inverse energy

cascade [87, 90, 79].

The method [71, 72] Sec.3.9 using ensemble spectral quantities such as the auto- and
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Figure 4.29: The experimental setup for measuring the nonlinear power transfer.

cross-power, as well as the auto- and cross-bispectrum calculates both the linear and quadrat-

ically nonlinear terms in a simple wave-kinetic equation3.35. Using two closely spaced

probes in a flowing plasma, we can calculate the dispersion relation between frequency

and wavenumber. If the wavenumber is linear over a frequency range, then over this range

frequency and wavenumber can be related by a constant phase velocity vϕ, representing the

propagation of fluctuations. This linear relationship allows a rigorous interchange of f ↔ k,

rather than assuming this relationship, as is done with Taylor’s hypothesis. This analysis can

also be done in wavenumber domain [61] with an array of closely spaced probes. Using the

bispectral analysis we calculate the dispersion for potential fluctuations measured by probes

separated azimuthally by ∆x = 8 cm with 4,000 realizations of the two signals Fig.4.30. A

linear dispersion is found for fluctuations with f < 40 kHz, Fig.4.31, and over this range

wavenumber k = ω/vϕ with vϕ ≈ 6 km/s.

The calculated growth rate suggests that all fluctuations are damped. This is characteristic
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of a continuously driven system rather than a freely-evolving system. Smaller scale structures

in the higher frequency (wavenumber) range are more strongly damped. While a scale-free

neutral damping coefficient would scale as −γ ∼ k2, the observed damping rate follows a

more gradual trend. The fluctuations near 5-7 kHz are marginally damped or undamped,

representing the “source” or “injection scale” of the turbulence. This energy injection scale

is possibly due to rotational excitation of higher azimuthal mode number fluctuations, or

non-axisymmetric heating of a nearly over-dense plasma. The quasi-coherent modes at

m=1,2 exist in a more strongly damped wavenumber range than the essentially undamped

fluctuations at 6-7 kHz (m=3-4), and therefore would be less likely to be observed than

the m=3-4 structures. However, the higher mode number fluctuations are found to be sub-

dominant when the plasma mode structure is measured. It is the power transfer function

which will determine how the large-scale, low-m modes are generated, and come to dominate

the quasi-coherent observed structures.
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Figure 4.32: Auto- and cross- bi-spectra, as well as the nonlinear power transfer function.
The transfer function Tk( f1, f2) displays a positive power transfer at lower frequencies, most

evident in the upper triangular region.
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Using the calculated nonlinear coupling coefficient and bispectrum, the power transfer

function is given as Tk = <[Λk
Q〈φ fφ f1φ f2〉]. The converged auto- and cross- bi-spectra,

and power transfer function Tk( f1, f2) are shown in Fig.4.32. The relative power transfer

into mode k is calculated by
∑

f = f1+ f2 Tk( f1, f2). The transfer function is calculated to be

‘conservative’ in the fact that there is a power-match satisfying
∑

f Tk( f ) = 0, and serves as

another indication of proper convergence [90]. The power transfer is found to be positive

for f < 7 − 8 kHz and negative for f > 7 − 8 kHz, Fig.4.33. This indicates that the

smaller scale fluctuations give up their energy to the larger scale fluctuations in an inverse

cascade, consistent with the expectations of two-dimensional turbulence. It is therefore

reasonable to conclude that nonlinear amplification of small scale structures contributes

to the predominance of the large-scale m = 1 and m = 2 modes in dipole interchange

turbulence.
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Figure 4.33: Coherent modes exist in the range f ≤ 5 kHz. This is the frequency range
which receives spectral power from higher frequency fluctuations.
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4.8.1 Fluctuation Energy Spectrum

In the drift-interchange limit, the fluctuation energy in a plasma is given by the sum of an

adiabatic and electrostatic contribution [36, 13].

Ek =

( ñk

n̄

)2

+ k2ρ2
S

(eΦ̃

Te

)2

(4.2)

The observed spectral trends of 〈|ñk|
2〉 ∼ k−3 and k2〈|Φ̃k|

2〉 ∼ k−3 are in agreement with the

expectations for two-dimensional turbulence. Using these ensemble quantities the energy

spectrum for fluctuations in CTX has been computed and is shown in Fig.4.34 plotted

against wavenumber k = ω/vϕ. The spectrum obeys a power-law of Ek ∼ k−3 for k > 2 m−1,

consistent with the forward enstrophy cascade. The range just below k = 2 m−1 and above

the coherent mode at k = 0.9 m−1 displays a k−5/3 characteristic, consistent with the inverse

energy cascade for k below the wavenumber of the injection scales. It is in this small range

that the fluctuations have been shown to be very weakly or marginally damped. At L=50 cm,

the total fluctuation intensity is |ñ|/n0 ≈ 0.6, e|Φ̃|/Te ≈ 0.5, and the sonic Larmor radius

is ρS ≈ 2 cm with Te ≈ 8 eV and |B| = 140 G. For drift waves, experimental evidence

shows that the energy fluctuation spectrum peaks for k⊥ρS ≈ 1, and increases in energy

for k⊥ρS < 1 are associated with zonal flow generation [13]. For interchange modes the

energy spectrum peaks for k⊥ρS < 1. This is consistent with the dominance of interchange

fluctuations in CTX, not drift waves. While the adiabatic contribution to the fluctuation

energy appears larger than the electrostatic part, both have the same power-law dependence

for the energy spectrum as the Kraichnan result, Ek ∼ k−3.
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4.9 Amplitude Correlation

The amplitude correlation technique of Sec.3.10, refs. [90, 89] has been applied to a single

floating potential signal in CTX over an entire discharge. In further support of the calculation

of spectral energy transfer and the observed power-law scaling indicating the inverse energy

cascade, it is found that low frequency components lag high frequency components indicated

by a positive lag cross-correlation function. The primary power bands of interest for this

technique are the marginally damped spectral region and the low frequency band containing

the quasi-coherent modes. As seen in Fig.4.35, the positive lag time in the cross-correlation

function indicates that lower frequencies lag the higher frequencies. The interpretation of

this result is that a ‘pump’ wave at frequency fp, here represented by the marginally damped

band, will decay into a lower frequency wave at f < fp.
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Figure 4.35: The amplitude correlation technique applied between the marginally damped
spectral region and the low frequency region where quasi-coherent structures exist. The low

frequency lags the high frequency.

Furthermore, it is in the spectral region for f > 6 kHz where the power spectrum takes

on a full power-law trend. It is also found that the lower frequency band lags the higher

frequency band in this spectral region (Fig.4.36). This is further indication that energy is

flowing to the lower frequency, longer wavelength modes.
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Figure 4.36: The amplitude correlation technique applied between frequency bands above
the quasi-coherent modes. The low frequency lags the high frequency.
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4.10 Summary of The Observation and Characterization

of Interchange Turbulence

This section on the observed turbulence state of a dipole confined plasma reports the primary

experimental results.

Local measurements indicate that the plasma fluctuations of density and potential are

turbulent. The auto-correlation functions for both density and potential decay quickly, with

correlation intervals of τc ≈ 50, 60 µs, respectively. The potential fluctuations possess

stronger long-range correlation of m = 1, 2 modes than the density fluctuations, with more

pronounced secondary maxima in their auto correlation functions. The power spectra of

potential fluctuations displays more pronounced spectral peaks at low frequency than the

density, which is in agreement with the longer correlation interval. The spectral trends of

density and potential admit power-law trends for frequencies above 10 kHz, with power-laws

of f −3 and f −5, respectively.

Using two diagnostics positioned on a magnetic field-line, the parallel wavenumber of

potential fluctuations is determined to be k‖ ≈ 0. The measurements have been made with a

single fixed probe, and a second probe which moves radially at fixed azimuthal angle. There

is a slight variation in the cross-phase at maximum cross-coherence when the moving probe

is positioned radially separated from the refence field-line, but is exactly zero when ∆L = 0.

The correlation length of potential fluctuation in the rotating plasma has been measured

by cross-correlation analysis between probes separated azimuthally. The lag time τLag

increases in direct proportion to the separation distance between the probes. The azimuthal

propagation of the potential is vϕ ≈ 6 km/s in the −ϕ̂ direction. The cross-correlation

amplitude decreases with correlation length λc ≈ 45 cm, and the correlation time in the

moving frame is then calculated as λc/vϕ ≈ 75 µs. This is in close agreement with the

auto-correlation time of the potential time trace.

Through ensemble spectral analysis, it is calculated that the potential structure contains
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quasi-coherent m = 1, 2 modes at f ≈ 1.5 and 3-4 kHz, respectively. The squared coherence

is near 20-40%, being stronger closer to the heating location.

The correlation between bulk density measured by a Langmuir probe and a single polar

detector collecting ion current on the same magnetic field-line is measured to possess a zero

time-lag. Cross-correlation between density and multiple polar detectors determines that the

polar current and bulk density fluctuations are self-consistent. Using the polar imager array,

the plasma rotation is calculated to be near 1.5-2 kHz by cross-correlation analysis and the

slope of the stripes in Fig.4.11

Density and potential have a mean phase shift of |〈αñ,Φ̃〉| ≈ π/2 which produces a radial

fluctuation induced particle flux to the outboard side of CTX. The density fluctuations near

L = 55 cm also possess a probability density function which is positively skewed, with

skewness ≈ +0.25. The skewness of +0.25 indicates that intermittent transport events do

occur in CTX, but with less relative intensity than the tokamak edge.

Based on the observed potential structure, a basis function expansion for the stream

function has been used to calculate the global structure of the potential. The time evolution

of the global density dynamics measured by the polar imager, along with the spatial and

temporal derivatives, is used to invert the continuity equation. The time-averaged global

potential found to be dominated by a radially broad, axisymmetric negative potential. The

potential fluctuations are dominated by the lowest order, broad radial mode. The fluctuation

intensity of potential perturbations decreases with increasing azimuthal mode number

m = 1, 2, 3.

As a new diagnostic to CTX, a high-speed imaging camera has been used to view the

visible light intensity at frame rates up to 10,000 fps. The camera has been oriented to view

the radial width of the plasma, and over a angular wedge in azimuth. The fluctuations of

light intensity by the fast camera is found to be correlated with density fluctuations and polar

diagnostics with a lag time τLag = 0. The time-averaged radial light intensity profile is found

to be in excellent agreement with the time-averaged density profile obtained from the polar
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imager, both displaying that the density profile is radially broad. The radial profile of RMS

light fluctuations are near 4%, and are maximum near the plasma ECRH resonance location,

and also where the time-averaged profile gradient is the steepest. The radial wavenumber kR

of light fluctuations is calculated to be the longest wavelength which can fit in the system,

confirming that the fluctuations of density are radially broad as well.

The Hilbert Transform-based modal decomposition of local single-point density fluctua-

tions displays four mode functions which are correlated above 35% with the original time

series. When coherent density structures are formed in time, the signal energy undergoes

significant amplification.

The bi-orthogonal decomposition for multiple space-time points has shown that the

amplitude of global density fluctuations can be represented by a limited number of spatio-

temporal mode functions. The spatial structure of global density fluctuations is composed

of a limited number of rotating, radially broad, low-order azimuthal modes. The temporal

variation and phase of the relatively simple mode function displays significant harmonic

content and periods of steady and non-steady rotation.

Lyapunov exponent analysis of the density fluctuations reveals that the time evolution is

chaotic, with a converged positive Lyapunov number λ ≈ 25, 000s−1. The Lyapunov time is

40 µs, near the auto-correlation time of density fluctuations. The Lyapunov analysis also

reveals a low-dimensionality to the time evolution.

Based on bispectral analysis, the potential fluctuations are found to be linearly damped,

with smaller scale structures damped more strongly than the large structures near m = 4

which are marginally damped. The nonlinear power transfer estimator displays suppression

of short wavelength structures with mode number m > 4, and amplification of the long

wavelength m = 1, 2 quasi-coherent modes.

The fluctuation energy spectrum is a combination of adiabatic and electrostatic energy,

and possesses as k−3 power-law trend for k > 2 m−1. There also exists a k−5/3 region of

the energy spectrum at higher k than the quasi-coherent modes and at lower k than the
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marginally damped modes.

The amplitude correlation technique calculates a positive time lag between fluctuations

in the marginally damped spectral region, and the quasi-coherent modes.



Chapter 5

Simulating Interchange Turbulence

A high-performance simulation [66, 56] is used to investigate the effects of adding a particle

source and sink on a dipole confined plasma. The code evolves cold fluid ions with kinetic

electrons on a 2D grid in azimuthal angle and normalized magnetic flux (ϕ, y = ψ/ψ0). The

third spatial dimension, parallel to the magnetic field, is eliminated by bounce averaging the

motion of particles. The bounce-averaging of motion along the magnetic field lines allows

the study of the low-frequency interchange dynamics perpendicular to the strong confining

field in the same manner as the previous chapter Ch.4.

Numerically, the leapfrog method explicit time-stepping scheme is used to evolve the

ion density per unit flux N̂i, the electron distribution function Fµ composed of multiple

species of electrons at energy µ, charge density and potential. A flux-corrected transport

algorithm [93, 94] is used to advance the electron distribution functions and ions.

The motion of the electron distribution is given by

∂Fµ

∂t̂
+ ∇ · (FµV̂e) = 0 (5.1)

where V̂e is the sum of the E × B and azimuthal magnetic particle drift.

107
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The ion fluid motion is determined by the ion continuity equation

∂N̂i

∂t̂
+ ∇ · (N̂iV̂i) = 0 (5.2)

where N̂i is the density per unit flux N = 〈n〉δV (δV =
∫

dχ/B2, 〈A〉 = δV−1
∫

Adχ/B2) and

V̂i is the sum of the E × B and polarization drifts. The ion polarization drift is calculated

through a nonlinear solver, obtaining the time-rate of change of potential by solving

∂

∂t̂
∇ · ε∇Φ̂ = −4π

∂ρ̂

∂t̂
= ∇ · Ĵ (5.3)

in an iterative manner, where Ĵ is a function of ∂Φ̂/∂t̂

In the leapfrog scheme, the velocities are always a half time-step off from the quantities

which they are pushing. The following is a sketch of the method for advancing time in the

the code, where the time index is superscripted:

• Initialize

Φ̂ j−2 , Φ̂ j−1 , Φ̂ j

N̂ j−1
i , N̂ j

i

F j−1 , F j
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• Leapfrog half-step

V̂ j
E =

B × ∇Φ̂ j

B2

F j+1/2 = F j−1/2 − ∆t̂∇ · (F jV̂ j
e) where V̂e = V̂E + µ̂y2ϕ̂(

∂Φ̂

∂t̂

) j

← Solving
∂

∂t̂
∇ · (ε∇Φ̂ j) = −4π

∂ρ̂ j

∂t̂
= 4π∇ · Ĵ j

where Ĵ j = Ĵ j
(
ρ̂ j, F j, N̂ j

i , Φ̂
j,
∂Φ̂

∂t̂

j)
N̂ j+1/2

i = N̂ j−1/2
i − ∆t̂∇ · (N̂ j

i V̂ j
i ) where V̂i = V̂E + V̂p

Φ̂ j+1/2 = Φ̂ j−1/2 + ∆t̂
(
∂Φ̂

∂t̂

) j

ρ̂ j+1/2 = ∇2Φ̂ j+1/2

• Leapfrog full-step

V̂ j+1/2
E =

B × ∇Φ̂ j+1/2

B2

F j+1 = F j−1 − ∆t̂∇ · (F j+1/2V̂ j+1/2
e ) where V̂e = V̂E + µ̂y2ϕ̂(

∂Φ̂

∂t̂

) j+1/2

← Solving
∂

∂t̂
∇ · (ε∇Φ̂ j+1/2) = −4π

∂ρ̂ j+1/2

∂t̂
= 4π∇ · Ĵ j+1/2

where Ĵ j+1/2 = Ĵ j+1/2
(
ρ̂ j+1/2, F j+1/2, N̂ j+1/2

i , Φ̂ j+1/2,
∂Φ̂

∂t̂

j+1/2)
N̂ j+1

i = N̂ j−1
i − ∆t̂∇ · (N̂ j+1/2

i V̂ j+1/2
i ) where V̂i = V̂E + V̂p

Φ̂ j+1 = Φ̂ j−1 + ∆t̂
(
∂Φ̂

∂t̂

) j+1/2

ρ̂ j+1 = ∇2Φ̂ j+1

5.1 The Hot Electron Interchange Simulation

The simulation code was previously to study the hot electron interchange mode in magnetic

dipole geometry [65]. This ‘initial value’ code evolves a linearly unstable pressure profile,

and accurately reproduces the ‘frequency-sweeping’ nonlinear evolution of fluctuations.
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The code also includes ion rotation to drive the centrifugal instability [57]. While the

developed simulation has reproduced many of the observations in CTX, it is insufficient

for simulating the higher density, turbulent plasmas investigated in this thesis. The existing

sequential simulation has computational times prohibitive for computational domains larger

than 64 × 64. There is no conserving source and sink which would allow simulations to

achieve a steady, turbulent state.

5.2 Parallelization of Existing Code

To simulate turbulence and measure fluctuations over a large range of scale separations, fine

spatial resolution is required. For the sequential simulations on a computationally refined

grid, the time to execute a simulation to steady state and the storage requirements on a

single processor architecture become prohibitive. Therefore, the existing code written in

FORTRAN has been translated to C, and parallelized with the PETSc package for distributed

computing [7, 6, 8]. PETSc is a leading suite of data structures and routines for massively

parallel architecture, based on the MPI message passing standard for communication. The

parallelization of the simulation code requires a distributed nonlinear fast Poisson solver,

which has been developed in collaboration with H. Zhang at Argonne National Laboratory.

For the fully parallel simulation, the computational domain (ϕ, y) is broken into horizon-

tal ’bands’ continuous in the periodic direction (ϕ), but breaking the radial domain across

processes (Fig.5.1). This domain decomposition allows continued use of the spectral method

for inverting the Poisson equation.

5.2.1 Fast Poisson Solver

For the majority of the simulation, which is dominated by function evaluations (e.g. increas-

ing the number of electron species, evaluating local flux functions, performing numerical

derivatives), parallel speedup is achieved immediately even for small computational grids.
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Figure 5.1: The computational domain decomposition allowing use of the sequential FFTW.

The solution to the Poisson equation, however, is a global solve, not a local function evalua-

tion. The solution to Poisson’s equation therefore requires communication across processes.

The Fast Poisson Solver (FPS) is unique in that it requires the fast solution to a complex,

non-symmetric tri-diagonal linear system: an inherently sequential operation based on the

LU decomposition. In collaboration with H. Zhang at Argonne National Laboratory, we

have developed the DAFPS (Distributed Array Fast Poisson Solver) PETSc module for

parallel fast Poisson solves using a divide and conquer algorithm [82]. The system to be

solved is a general Ax = b, tri-diagonal linear system. The Thomas algorithm [82] is

the usual means of an exact solution, performed sequentially and ‘in place’ for speed and

memory efficiency. The Thomas algorithm, however, cannot be used for a global linear solve,

because it will not parallelize. In order to solve the system exactly, without assumptions of

diagonal dominance or symmetry, the matrix is decomposed as follows:
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A
! !A V E

=

Ã ∆A V TE

Figure 5.2: The decomposition across 3 processors of tri-diagonal matrixA into Ã (left)
and ∆A = VET (right). The processor boundaries are indicated by the yellow lines.

Ax = b

A = Ã + ∆A

= Ã +VET

x = A−1b

= (Ã +VET )−1b

= Ã−1b − Ã−1V(I + ETÃ−1V)−1ETÃ−1b

where Ã is block tri-diagonal, and ∆A contains the remaining off-diagonal entries. The

interface system which requires communication between processes is illustrated in Fig.5.2.

The solution procedure is summarized as follows for the general systemAx = b, where

the left-aligned equations are solves, and the right-aligned equations are algebraic.
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Ãx̃ = b

ÃY = V

h = ET x̃

Z = I + ETY

Zy = h

∆x = Yy

x = x̃ − ∆x

This major advancement allows the simulation to be run on a massively parallel architec-

ture with very large spatial grids. The strong scaling and parallel speedup for a 250 × 250

computational grid is show in Fig.5.3. For up to 12 nodes (CPUs), the execution time for a

single iteration of the simulation drops from 14 s to 2 s, a speedup of a factor of 7. While

this may not be ideal scaling1, it nevertheless allows reasonable execution time for achieving

a steady state.

5.2.2 Simulating Steady State, Driven Turbulence

To simulate the turbulent plasmas in CTX, a particle conserving source and sink of ion

and electron density and electron energy is incorporated into the time evolution of the ions

and electron distribution functions. The time evolution is advanced by the leapfrog scheme

based on the continuity equation, but now has a source and sink added:

∂N̂i

∂t
+ ∇ · (N̂iV̂i) + ∇ · ΓD = S (5.4)

1Ideal speedup has T1/Tnp = np where T1 is the execution time on one processor, and Tnp is the execution
time on np processors.



CHAPTER 5. SIMULATING INTERCHANGE TURBULENCE 114

2 4 6 8 10 12
np

2

4

6

8

10

12

14

T
i
m
e
!s"

Strong Scaling: 250!250

2 3 4 5 6 8 10 12
np

1

2

3

4

5

6

7

T
1
!T np

Speedup: 250!250

50 100 150 200 250 300 350 400
Mx!My

1

2

3

4

5

6

7

8

T
i
m
e
!s"

Execution Time # Iteration

np: 1,2,3,4,5,6,8,10,12
FORTRAN: """""

Figure 5.3: Parallel performance of the simulation code. A 250 × 250 computational grid
shows good strong scaling and parallel speedup for up to 12 nodes (CPUs). For a

computational grid larger than 1302 the performance of the parallel version of the code far
exceeds the sequential FORTRAN version.
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where ΓD = −D·∇N̂i is the particle flux,D is the cross-field diffusion tensor, and S a volume

source rate of particles. The diffusion profile is taken as axisymmetricD = D(ψ)(I − b̂b̂).

In non-dimensionalized magnetic coordinates, this is

∂N̂
∂t̂

+
∂

∂ϕ
(N̂iVi,ϕ) +

∂

∂y
(N̂iVi,y) − 1.8D̂hDy2∂

2N̂i

∂ϕ2 − 3.2D̂
∂

∂y

[
hD

∂

∂y
(y4N̂i)

]
= D̂DS hS (5.5)

were D(ψ)→ D̂hD(y). The functions hD(y) and hS (y) are normalized diffusion and source

profiles. Thus the single parameter D̂ represents the strength of the particle ‘recycling’. To

maintain the total number of particles, the time-rate of change of the integrated ion density

must be unchanged. ∫
∂N̂
∂t̂

d2x = 0 (5.6)

The coefficient DS is negative the integrated volume loss rate of diffusion divided by the

integrated volume source profile, and must be calculated at every time step to maintain

conservation. Therefore, we calculate DS as

DS =
−

∫
1.8hDy2 ∂2N̂

∂ϕ2 + 3.2 ∂
∂y

(
hD

∂
∂y (y4N̂)

)
d2x∫

hS d2x
(5.7)

At each time step both the ions and each electron distribution function N̂, Fµ are updated

with a 2D grid which integrates to zero. Because the ions are cold but move as a fluid, the

number density N̂i must be conserved. The electron distribution functions Fµ, however,

each have characteristic energy µ̂. Therefore the electron source adds to the distribution,

maintaining number conservation and energy conservation.

5.3 Results from Simulations

On a 60 x 60 grid, quasi-steady driven turbulence is achieved with the conserving source and

sink. This represents a grid spacing of approximately 5.2 cm at L=50 cm major radius. When
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the diffusion parameter is too small D̂ = 1.0× 10−5, the strength of the recycling is too weak,

and the density profile is maintained at marginal stability ∂N/∂ψ ≈ 0 (Fig.5.4,bottom). There

is very little density or potential fluctuation for D̂ = 1.0×10−5. When the diffusion parameter

is too large, the steady-state density profile approaches the difference between the source

and sink profiles (Fig.5.4,top), far from marginal stability. When the diffusion parameter2

is set at D̂ = 1.0 × 10−4, quasi-steady convection cells develop (Fig.5.4,middle). These

convective cells are radially broad, and have low order azimuthal wavenumbers. During this

steady convection, the density profile is maintained slightly steeper than marginal stability.

This is in agreement with density profile measurements in CTX (Fig.2.16).

D̂ = 1.0× 10−3

D̂ = 1.0× 10−4
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Figure 5.4: The results for three different values of the parameter D̂, which determines the
‘strength’ of the source/sink. When the diffusion is strong (top), the steady state density
profile matches that of the source profile. When the diffusion is too weak, no recycling

occurs and the density takes on a N̂i(y)=constant, or n(L) ∼ 1/L4 profile. When the
diffusion is adjusted to D̂ ∼ 1.0 × 10−4, steady-state recycling of large convective cells

occurs. The profile increases slightly with y, indicating that the density is maintained at a
profile steeper than marginal stability.

2This is a diffusion coefficient of D⊥ ≈ 15 m2/s, using D = D̂ωdhL2
0
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The potential profiles from the simulation are also in agreement with the measurements

in CTX. The potential structure is found to be radially broad and negative. This potential

profile agrees with both probe measurements (Fig.2.16) and the stream function calculation

detailed in Sec.3.34 and results presented in Fig.4.16.

On a more refined grid, the coherent structures are less pronounced. Higher m-number

structures are observed to persist on a computational domain of Mx × My = 200 × 60. This

represents a grid spacing of approximately 1.56 cm at L = 50 cm. This size scale is of the

order of the ion gyro-radius in CTX for a 1 eV ion at major radius L=50 cm where ρi ≈ 1

cm.
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Figure 5.5: The non-dimensionalized potential Φ̂ measured at ϕ = 0, and across the plasma
radius from y=[1.4, 0.4] (L=[25,65 cm]). The evolution of the profile Φ̂(L) indicated as

black to red as time evolves. The profile is similar to that in Fig.4.16
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Figure 5.6: The non-dimensionalized density N̂i measured at ϕ = 0, and across the plasma
radius from y=[1.4, 0.4] (L=[25,65] cm). The evolution of the profile N̂i(y) is maintained

slightly steeper than marginal stability (∂Ni/∂y = cnst). Also the density profile in
laboratory coordinates which varies like 1/L4.
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Figure 5.7: The non-dimensionalized density N̂i measured at y = 0.5 (L=54 cm), and
around the plasma azimuth for Mx = 30 and Mx = 200. Large-scale structures rotate

around in the negative azimuthal direction, as measured in CTX. Coherent structures are
seen to merge and split similar to Fig.4.11.
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Figure 5.8: The ensemble azimuthal mode number spectrum for Mx = 30 and Mx = 200.
As the azimuthal grid is refined, the dominant structures tend to increase in wavelength

from m = 1, 2 to m = 5.
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Using the same numerical techniques detailed in Sec.3, the spectral trends of potential

and density have been calculated. Displayed in Fig.5.9 are both a single time series of

potential fluctuations, and the associated spectrum Φ̂Φ̂∗ taken at an equivalent radial location

in the plasma. The spectral trend of potential fluctuations displays the same power-law

scaling Φ̂Φ̂∗ ∼ f −5 as the observation in CTX (Fig.4.3). The density, which displays more

fine structure, has a less-steep spectral trend of N̂iN̂∗i ∼ f −3, which is also in agreement with

the observation in CTX. Both of these spectral trends are in agreement with the expectations

of two-dimensional turbulence, and the experimental results of Sec.4.8.
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Figure 5.9: A time trace and associated spectrum for potential fluctuations. The potential
displays smooth traces with little fine structure. The power spectrum follows a f −5

power-law.
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Figure 5.10: A time trace and associated spectrum for density fluctuations. The density
displays much more fine structure than the potential, resulting in a power spectrum which is

less steep. The power spectrum is seen to follow a f −3 power-law.
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Figure 5.11: Ensemble wavenumber spectrum taken across the outboard computational
domain from L = [62 : 30] cm (blk-red). The power spectrum is seen to follow an

approximate f −3 power-law most accurately for the outboard (darker) measurements.
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5.4 Summary of Simulation Results

New additions to a successful dipole magnetic field-confined hot electron plasma simulation

have achieved quasi-steady turbulence. The high-performance parallel simulation of driven

interchange turbulence reproduces many of the features observed in the laboratory. The

parallelization of the software and inclusion of a conserving source and sink provides a tool

which is used to test the model equations. Both laboratory observations and simulation re-

sults are consistent with two-dimensional, cross-field interchange mixing driven at marginal

stability. The simulation accurately captures the dynamics of rotating, long wavelength

density and potential structures, in agreement with experimental observations. Furthermore,

the spectral trends of density ÑÑ∗ ∼ k−3 and potential Φ̃Φ̃∗ ∼ k−5 agree with the predictions

for two-dimensional enstrophy cascading, and are also consistent with experimental obser-

vations. However, as the grid is continuously refined, the dominant structures increase in

wavenumber (Fig.5.8). As a suggestion for future work, apply the statistical treatment of

spectral energy transfer to long time series obtained from long-time turbulence simulations

on more sophisticated architectures. These results may be used to further test the model

equations to determine the consistency between the spectral cascade trends and the inverse

energy, forward enstrophy cascade for two-dimensional turbulence.



Chapter 6

Conclusion

Understanding turbulence in fluids and plasmas remains a challenge for theory, experimenta-

tion, and simulation. Turbulent processes have broad impact on fields such as fluid dynamics,

plasma physics, astrophysics, combustion, atmospheric and earth sciences. In magnetic

fusion plasmas, turbulent energy transfer and structure coupling remain primary candidates

for generating shearing zonal flows and transport barriers. The formation of transport barri-

ers achieves enhanced confinement regimes in modern tokamaks and is necessary for the

feasibility of fusion energy. Advancements in understanding the generation of turbulence

and the associated transport of particles, heat, and momentum requires thorough measure-

ments of plasma parameters and fluctuations. This thesis reports the local and global spatial

and temporal characteristics of plasma turbulence in a magnetic dipole for the first time.

Using newly installed diagnostic capabilities, the plasma parameters, profiles and dynamics

are measured, and long-time data records are statistically analyzed. These comprehensive

measurements of the dipole-confined plasmas in CTX show that the turbulence consists of

rotating, two-dimensional interchange modes.
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6.1 Discussion of Results

The field-aligned wavelength and coherence confirms the dominance of the interchange

mechanism for cross-field mixing, and strengthens the presumption of the two-dimensional

nature of the dynamics. The local measurements are consistent with fully developed

turbulence, with power-law spectral trends, quickly decaying auto-correlation functions, and

a lack of fully coherent modes in the plasma. When viewed globally, ensemble statistics of

cross-correlation, cross-coherence and phase reveal evidence of long-range correlation and

quasi-coherence of low-order azimuthal modes. This remains a feature of two-dimensional

turbulence, and turbulence in general: the existence of coherent structures in a fully turbulent

medium. These quasi-coherent structures are responsible for the majority of the fluctuation

induced particle flux, and can form the basis of understanding nonlinear phenomena such as

intermittent “blob” transport in plasmas.

The polar imaging diagnostic and amplifier upgrades provide multi-point global mea-

surements of density fluctuations at high temporal resolution, and spatial resolution within

the correlation length of the fluctuations. Globally, plasma dynamics are observed to evolve

by relatively simple, large-scale, radially broad, sine and cosine-like modes which represent

the “self-organized” state of dipole-confined plasma turbulence. It is the chaotic temporal

variation of these global structures which produces locally measured fluctuations that appear

with a power-law frequency spectrum trend that peaks at low frequencies, while having the

spectral density usually associated with “classical turbulence”. The Lyapunov exponent

analysis indicates that nearby trajectories in phase space diverge exponentially on a timescale

near 40 µs. This phase-space divergence manifests itself as a decorrelation of fluctuations

before the plasma rotates once around the device azimuthally. These properties of the

large-scale, global modes are indeed evocative of Rayleigh-Bérnard convection in fluids.

Rayleigh-Bérnard convection is a driven flow which can have chaotic convection patterns

describable by a Lorenz model. There is a know plasma equivalent in flute modes explored

theoretically by Rypdal and Garcia [77] and investigated experimentally by Živković and
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Rypdal [95].

The broad power-law frequency spectrum and the dominance of just a few large-scale

modes are two views of interchange turbulence that are not paradoxical. They are consistent

in that they join together two spatial scales: the large global scale and the smaller scale

associated with viscous or collisional damping. We observe the small scale of the damped

fluctuations, which disappear too quickly to become global observables, and relinquish their

fluctuation energy to lower wavenumbers at the large-scale. The scale of the large structures

is on the order of the system size, possesses azimuthal mode numbers m < 4, and receives

energy from the higher wavenumbers. The energy cascade is the process which connects

these two scales, generates the large-scale, global structures, and determines the power-law

spectrum.

The spectral trend of the fluctuation energy corresponds to the forward enstrophy, inverse

energy cascade for a two-dimensional turbulent fluid. The converged estimator of nonlinear

power transfer through three-wave interaction provides further evidence that the observed

quasi-coherent structures are the direct result of an inverse energy cascading process. The

amplitude correlation between the marginally damped region of the spectrum and the quasi-

coherent modes provides corroborating evidence. Thus the inverse energy cascade originally

proposed by Robert Kraichnan in 1967 [51] is a likely candidate for the generation and

sustainment of long wavelength modes in CTX.

A fully parallelized, self-consistent nonlinear simulation has been used to test the model

equations. The simulation achieves a quasi-steady driven turbulent state. The combination

of a source and sink of ion and electron number density and electron energy achieves a

balance at marginal stability, with a density profile in agreement with observations in CTX.

Density and potential fluctuations are computed to be dominated by rotating, radially broad,

long wavelength azimuthal modes which are also observed experimentally.
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6.2 Opportunities for Future Research

This thesis also reports the observation and identification of large, convective-like structure

generation in an open field-line configuration. The nonlinear dynamics of these structures

contributes to the body of knowledge for understanding the convective ‘blob’ structures at

the edge of tokamaks where the field-lines are open. Because of its large plasma volume and

diagnostic access, the CTX device may serve as a testbed for a tokamak disruption mitigation

mechanism which produces local convective cells in the scrape-off layer [18, 78, 19]. These

convective cells are generated by biasing poloidally neighboring flux tubes. The application

of a voltage bias creates a controllable-rate radial convective mechanism through a poloidal

electric field. This is one testable option for reducing the heat flux which can damage the

material wall of a fusion reactor.

The work in this thesis provides experimental evidence for the two-dimensional dual

cascade of energy and enstrophy. Further investigation into the interrelationship of energy

injection, or ‘pumping’, and the inverse energy cascade may be possible by seeding the

plasma with a high-frequency electrostatic perturbation. Equivalently, an array of phase-

shifted, closely spaced probes may indeed inject energy directly into the high wavenumber

region. Because the plasma is rotating, the same nonlinear power transfer calculations

performed in this thesis can be used by probe-pairs situated ‘downstream’ from the azimuthal

location of the energy injection. Thus, by varying either the frequency or wavenumber of

the pump wave, the spectral cascade may be viewed over a wider range of spatial scales

between the injection and condensate.



Appendix A

Velocity-Vorticity Formulation of

Navier-Stokes Equation

The Navier-Stokes equation is

D~u
Dt

=
∂~u
∂t

+ (~u · ∇)~u = −
1
ρ
∇p + ~fext + ν∇2~u (A.1)

where term by term, we have unsteady acceleration, convective acceleration, pressure

gradient, body forces, and viscosity. We will consider the two-dimensional case in x̂, ŷ. The

vorticity is defined as ~ω = ∇ × ~u = ωẑ. Taking the curl of Eq.A.1, the first term on the LHS

is

∇ ×
∂~u
∂t

=
∂~ω

∂t
(A.2)

The second term on the LHS is

∇ × (~u · ∇)~u = ∇ ×

[
∇
( |~u|2

2

)
+ (∇ × ~u) × ~u

]
(A.3)

= −∇ × (~u × ~ω)

= −
[
~u����(∇ · ~ω) + ~ω����(∇ · ~u) + �����(~ω · ∇)~u − (~u · ∇)~ω

]
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and the first, second, and third terms can be eliminated by the vector identity ∇ ·∇× (~?) ≡ 0,

incompressibility ∇ · ~u = 0, and the two-dimensional assumption, respectively. This leaves

the LHS as
∂~ω

∂t
+ (~u · ∇)~ω =

D~ω
Dt

(A.4)

The RHS is, for constant ρ,

∇ × −
1
ρ
∇p = 0 (A.5)

by ∇×∇(?) ≡ 0. The body force term is simply ∇× ~fext · ẑ = g. The viscous contribution is,

for constant ν,

∇ × ν∇2~u = ν∇ ×
[
∇����(∇ · ~u) − ∇ × ∇ × ~u

]
(A.6)

= ν∇ × (−∇ × ~ω)

= ν
[
− ∇����(∇ · ~ω) + ∇2~ω

]
= ν∇2~ω

Therefore, in the two-dimensional velocity-vorticity formulation, the Navier-Stokes

equation for vorticity ~ω = ωẑ becomes

∂ω

∂t
+ (~u · ∇)ω = g + ν∇2ω (A.7)

The kinetic energy per unit mass is

E =
1
2
〈~u2〉 (A.8)

and the evolution is given as [83]

DE
Dt

=
1
2

D~u2

Dt
= −νZ (A.9)
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where Z = 〈ω2〉. Therefore energy is conserved in the inviscid case. For the enstrophy

evolution,
DZ
Dt

= −ν〈(∇ω)2〉 (A.10)

which is also conserved in the inviscid case.



Appendix B

Basic Probe Theory

B.1 Langmuir Probes

The Langmuir probe, named for Columbia University graduate and Nobel Prize winning

physicist Irving Langmuir, is simply a material electrode inserted into a plasma and biased

with a voltage different from other electrodes or from the containing vessel.

Foregoing the full derivation [43], the Debye sheath between the plasma and a material

has the property that ions pass through the sheath with the sound speed in the plasma, where

Cs =

√
Te + γiZTi

M
(B.1)

and is usually approximated as Cs =
√

Te/M when the ions can be assumed cold.

The current density is always given as j = qnv, where the ion current is ji = eniCs.

Because net current is always what is measured, Langmuir probes are biased sufficiently

negative such that only ions are collected (usually a few times the electron temperature Te).

When this condition is met, the collected current is called the ion saturation current, or Isat,

and is directly proportional to density, but varies more weakly with temperature as
√

Te.

Quasineutrality allows us to write this as j = eneCs since ni ≈ ne.
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The electrons can be modeled as Boltzmann in one dimension, where

fe(vx)dvx ∝ exp
(
−

W
kBT

)
= exp

(
−

mv2
x/2

kBT

)
(B.2)

and only higher energy electrons can overcome the potential hill set up by the negative

sheath potential. The mean velocity is

v̄e =

∫ ∞
ve0

fe(vx)vxdvx∫ ∞
ve0

fe(vx)dvx

(B.3)

where ve0 is given by setting the kinetic energy equal to the electrostatic energy qΦ.

ve0 =

√
2eΦsh

me
(B.4)

resulting in

v̄e =

√
kBTe

2πme
e−eΦsh/kBTe (B.5)

Now, using jisat = eneCs and our expression for v̄e, we can write

je = jisat

√
M

2πme
e−eΦsh/kbTe (B.6)

The total current is then j = je − jisat,

j = jisat

(
− 1 +

√
M

2πme
e−eΦsh/kbTe

)
(B.7)

B.2 The Single-Electrode Langmuir Probe

The single electrode Langmuir probe is simply a metallic wire inserted into a plasma, with a

DC or AC voltage applied to the tip. When the voltage is DC and sufficiently negative, this

is called an Isat probe, which measures the ion saturation current through the plasma sheath.
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That current is

jisat = eneCs (B.8)

which is a current density. The current which will be measured electronically is the total

current, I = A j, where A is the area through which that current density flows. This area is

usually larger than the physically measured area of the probe, because the sheath thickness

is nonzero. If the temperature fluctuations are assumed negligible compared to density

fluctuations, it is common to assume Iisat ∝ n.

For a sinusoidal or triangle waveform variation of the bias voltage, the I − V charac-

teristics of the plasma can be obtained. This is the response of the collected current to the

applied bias to the electrode. The floating potential is the zero current crossing voltage point

where the current is zero. For voltages below the floating potential, more ions are collected

than electrons. For voltages above this, exponentially greater electrons are collected for

increasing voltage. This characteristic of increasing the bias voltage allows one to extract

the electron temperature Te. Using

I(V) = Iisat

(
− 1 + ee(V−V f )/kBTe

)
(B.9)

and taking the natural logarithm, we arrive at

ln(I(V) + Iisat) =
V − V f

kB(Te/e)
(B.10)

and therefore the slope of the log of the I − V curve in the region above V f is 1/(Te/e),

where Te/e has units Volts.

The electron temperature in CTX is Te ≈ 5 − 10 eV as calculated by a simple trian-

gle waveform swept langmuir probe. This is in agreement of the triple probe electron

temperature measurements.
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Figure B.1: A current-voltage trace for a swept langmuir probe in a plasmas with floating
potential of -8 V and having Te = 10, 15 eV. For V ≥ −8V the log current plot takes on a

linear relationship.

B.3 Double Probe

A double probe [43] is two langmuir probes, biased with respect to each other rather than the

vessel which contains the plasma. In this case, the two probes measure equal and opposite

current

I = Iisat

(
− 1 + ee(V2−V f )/kBTe

)
= −Iisat

(
− 1 + ee(V1−V f )/kBTe

)
(B.11)

which can be written as

I = Iisat tanh
( eVB

2kBTe

)
(B.12)

where VB = V2 − V1.

B.4 Triple Probe

A triple probe [43, 23] is similar to a double probe, with the addition of a third tip to directly

measure the floating potential. The bias voltage is chosen to be a few times Te so that

the negative tip draws Iisat, and the other tip draws the (normally negative) positive Iisat.
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Therefore

Iisat = Iisat

(
− 1 + ee(V+−V f )/kBTe

)
2 = exp

[V+ − V f

kBTe/e

]
(B.13)

or

(V+ − V f ) = ln(2)kBTe/e (B.14)

Thus the triple probe provides three points on the I − V probe characteristic. The electron

temperature is directly measured in eV as Te = (V+ − V f )/ ln(2). The triple probe therefore

measures three basic plasma parameters (V f , ne,Te) simultaneously. Density is calculated

from Iisat = AeneCs
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Figure B.2: A current-voltage trace for a swept langmuir probe in a plasmas with floating
potential of -8 V and having Te = 10 eV. The temperature is calculated from the difference

between the floating potential and the positively biased probe tip.



Appendix C

Finite Difference For Spectral Energy

Transfer

Consider the simple system

∂φ(t)
∂t

= aφ(t) (C.1)

φ(t) = |φ(t)|eiΘ(t) (C.2)

Using the second in the first, we have

∂

∂t
(|φ|)eiΘ + |φ|eiΘ ∂

∂t
(iΘ) = aφ (C.3)

so
∂|φ|

∂t
= −|φ|

∂(iΘ)
∂t

+ aφe−iΘ (C.4)

and |φ| = φe−iΘ.
∂

∂t
(φe−iΘ) = −φe−iΘ∂(iΘ)

∂t
+ aφe−iΘ (C.5)
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Taking the finite-difference form of the LHS, we have

∂φ(t)e−iΘ(t)

∂t
≈ lim

τ→0

(
φ(t + τ)e−iΘ(t+τ) − φ(t)e−iΘ(t)

τ

)
(C.6)

Therefore,

φ(t + τ)e−iΘ(t+τ) − φ(t)e−iΘ(t) = τ
[
− φ(t)e−iΘ(t)∂(iΘ(t))

∂t
+ aφ(t)e−iΘ(t)

]
(C.7)

φ(t + τ)e−iΘ(t+τ) = φ(t)e−iΘ(t)
[
− τ

∂(iΘ(t))
∂t

+ aτ + 1
]

(C.8)

φ(t + τ) = φ(t)e−iΘ(t)eiΘ(t+τ)
[
− τ

∂(iΘ(t))
∂t

+ aτ + 1
]

(C.9)

=
aτ + 1 − τ∂(iΘ(t))

∂t

e−i[Θ(t+τ)−Θ(t)] φ(t) (C.10)

=
aτ + 1 − i[Θ(t + τ) − Θ(t)]

e−i[Θ(t+τ)−Θ(t)] φ(t) (C.11)



Appendix D

Search Algorithm For Embedded

Neighbors

To find neighbors in the space RdE in a quick way, we replace the Euclidean norm with

||x j − xi|| ≤ r −→ ||x j − xi|| = max0≤α≤dE−1{|x j+α − xi+α|}

We sort the xi such that

xΠ(1) ≤ xΠ(2) ≤ . . . ≤ xΠ(n)

where Π is the permutation matrix. Store Π and its inverse Π−1. We find neighbors of xi in

the first embedded dimension by starting with k = Π−1(i) (or the position where Π equals

i) and scan the xΠ(s) for s = k + 1, k + 1, . . . until the distance d = xΠ(s) − xi is larger than

r. Do the same for s = k − 1, . . . where d = xi − xΠ(s). Store those good j’s that satisfy the

norm condition. Then, searching those good j’s, repeat the procedure for d = |xΠ(s)+α − xi+α|.

This search algorithm results in the set S i(r) of j indices where a neighbor exists in a

dE-dimensional sphere.
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