
Bounce-Averaged Gyrokinetic Simulations in a Laboratory Magnetosphere
T.M. Roberts†, D.T. Garnier, J. Kesner, M.E. Mauel

Tuesday, 28 October 2014
∗Supported by U. S. DOE Grant DE-FG02-00ER54585.

†email: t.maximillian.roberts@gmail.com

a

Outline
A self-consistent, nonlinear simulation of interchange dynamics including the
bounce-averaged gyro-kinetics of deeply trapped electrons[1] was previously
used to understand frequency sweeping[2] and the turbulent cascades[3] ob-
served in dipole-confined plasmas. Time stepping is performed in an explicit
leap-frog manner and a flux-corrected transport algorithm is implemented.
Through adjustment of the particle and heat sources, this code reproduces
dynamics that resemble the turbulence measured experimentally, both in
spectral power-law trends and in the onset of a steepened density profile.
In this presentation, we discuss the physics and numerical methods of the
simulations as well as plans for including the effects of a biasing electrode
which can collect or inject electrons to compare to recent experiments with
current-collection feedback observed to regulate interchange turbulence.

1 Dipole Confined Plasmas
Laboratory dipole-confined plasmas provide a means of studying some of the
fundamental physics that govern the dynamics of planetary magnetospheres.
Due to the lack of magnetic shear, dipoles can undergo interchange dynam-
ics, driven by the solar in magnetospheres and by steep density profiles in the
lab. Magnetospheric convection is often steady, but in the laboratory we can
create plasma exhibiting fully developed interchange dynamics.
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Early work on the CTX device involved the study of an interchange insta-
bility resonant with the drift motion of deeply trapped electrons, known as
the Hot Electron Interchange (HEI) instability [2]. A steepened density pro-
file from microwave heating becomes interchange unstable and quasi-periodic
bursts characterized by frequency sweeping were observed.

HEIs can be suppressed through sufficient collisionality with neutrals, allow-
ing for transition to a higher density, turbulent plasma characterized by large
amplitude fluctuations in potential and density. A balance between plasma
sources and sinks creates a stationary turbulent spectrum [3].

Dipole Magnetic Flux Coordinates
Flux coordinates for an ideal dipole are a good approximation for the CTX
geometry:

B = ∇ϕ×∇ψ = ∇χ
where (∇ψ,∇χ,∇ϕ) is an orthogonal bias in covariant form:
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We consider two-dimensional dynamics by taking flux-tube averages, elim-

inating the parallel components. For a quantity A, the flux-tube average is
given as:

< A >≡ δV −1
∫ +∞

−∞

dχA

B2

We define the flux-tube average of density as δV −1
∫ +∞
−∞

dχn
B2 = 〈n〉, and

the number of particles on a field line as N = 〈n〉δV

2 Equations
The self-consistent evolution of interchange dynamics can be described by
the motion of kinetic electrons and cold, fluid ions coupled by the bounce-
averaged form of Poisson’s equation:

∂Fe
∂t

+∇ · (FeVe) = 0
∂ni
∂t

+∇ · (niVi) = 0 ∇2Φ = −4πρ

The electron distribution function is represented by multiple electron species
at different energies, µ. Due to the sufficient separation in frequency of the
gyro, bouncing and drift dynamics, we can assume that µ and J are con-
served. In addition, it has been observed that the interchange dynamics are
flute-like, k‖ ≈ 0 [2], justifying the use of flux-tube averages to reduce the
problem’s dimensionality.

Poisson’s Equation
We derive Poisson’s equation in dipole coordinates starting with the micro-
scopic version of Gauss’s Law:

∇ · E = −∇ · ∇Φ = 4πρ

where ρ is the total charge. In covariant notation, the Laplacian is:
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Taking a flux-tube average (killing the ∂
∂χ term):
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where hψ and hϕ are geometric terms given as:
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Cold Ion Fluid
Cold ions in a dipole magnetic field move under the influence of E × B and
polarization drifts. The electric field in terms of potential given as:

E = −∇Φ = −∂Φ

∂ui
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∂ψ
∇ψ − ∂Φ

∂ϕ
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So our expressions for the E ×B and polarization drifts become:
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In the absence of ion sources/sinks, we transform the ion continuity equation
into dipole coordinates and plug in our velocities:
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taking a flux tube average,
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where N is the flux-tube averaged density. The density weighted, flux-tube

averaged coefficients for the polarization drifts are found by assuming a sin θ
distribution of density along a field line:
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Kinetic Electron Dynamics
The motion of deeply trapped (J ≈ 0) electrons in a curl free magnetic field is
given by the guiding center drift Hamiltonian [4] with Hamilton’s equations:

H =
µcB
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where µ = mev
2/2B.

For time scales significantly slower than the gyration and bounce periods,
µ and J are preserved quantities as an electron moves across field lines. The
Vlasov equation for the electron distribution function is given as:

dFe
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We use a bounce-averaged distribution, Fe = Fe(µ, J, ψ, ϕ, t), where Fe is
given as the sum of a cold and hot electron population:

Fe = Ni0(ψ)
(

[1− α(ψ)]δ(µ)δ(J) + α(ψ)G(µ)δ(J)
)
, G(µ) =

µl−1ll

µl0Γ(µ)
e−µl/µ0

G(µ) is the electron distribution in µ. Integration over velocity space then
returns the number of electrons per unit flux, Ne =

∫
dµdJFe. The first az-

imuthal term represents the hot electron drift frequency ωd ≡
µc
e
∂B
∂ψ = µc

e
3B
ψ .

Normalization
We make these equations dimensionless by normalizing them with parame-
ters evaluated at the profile peak (heating resonance). Starting with Poisson’s
equation, if we normalize the following quantities as:

ψ

ψ0
≡ y,

Ni
Ni0
≡ N̂i

eΦ

µ0B0
≡ Φ̂, ωdh0t ≡ t̂

µ
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where the x0 quantities are defined at the profile peak. We multiply Pois-
son’s equation through by eψ2/Mµ0B0:
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We normalize the ion continuity equation, dividing by ωdh0Ni0,
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Finally, if we divide the electron equation by ωdh0, with the same normal-
ization for E ×B drift:
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where ωdh
ωdh0

= µ̂y2.
This normalization shows that the simulation is only dependent on two pa-

rameters, the ratio of L0 to λD0 and hot electron drift frequency over the ion
cyclotron frequency.

3 Numerical Techniques
The simulation solves the finite-difference approximations to the coupled
equations given above. The potential is advanced with a nonlinear solve of
the equation for charge continuity. Due to the periodic boundary condition in
the ϕ direction, employing a pseudo-spectral method effectively reduces the
dimensionality of the finite difference problem to be solved. We implement
a numerical stepping scheme for advancing the ion and electron populations
based on a flux conserving method by Zalesak [5].

Trapezoidal Leap-Frog Method
A second-order trapezoidal leap-frog algorithm for explicit time integration
is implemented to advance the ion and electron populations and potential.
First, the ion and electron populations are advanced a half-step in time by
using the existing potential. At this half-step, a new potential and charge den-
sity are calculated using the intermediate values of Fe and Ne, and with these
we find the intermediate fluxes. With the intermediate fluxes, we advance the
populations a full trapezoidal time step, then recompute the potential and
charge density. These two steps are identical aside from the time-base of the
terms being advanced. If we have a population, f (t), with a rate of change
ḟ = −∇ · Γ, we can describe this method as:

ft−∆t/2 =
1

2

(
ft + ft−∆t

)
ft+∆t/2 = ft−∆t/2 −∆t∆Γt

ft+∆t = ft −∆t∆Γt/2

where Γ = Γ
(
f (t),Φ(t), Φ̇(t)

)
is the flux calculated at each half-step, which

includes solving for the potential. In this approach, the populations are ad-
vanced by fluxes which are always a half-step off in time.

Nonlinear Solve for ∂Φ̂
∂t

To advance the potential at each half-step, we can consider the rate of change
of charge density. We can find this by equating the time derivative of Poisson’s
equation to the combination the ion and electron dynamic equations:
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where ρ̂ is the difference of the normalized flux-tube averaged ion density

and the electron distribution function integrated over velocity space.

We note the
˙̂
Φ terms on both sides of our rate equation. To efficiently

implement a pseudo-spectral technique, we bring the azimuthally symmetric
part of the polarization terms (N̄i = N̂i − Ñi) to the LHS. We rewrite the
equations with an effective dielectric:
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where
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The above equation is iteratively solved for the time rate of change in poten-
tial at the half and full leap-frog steps. This must be done before advancing
the ions as the polarization velocity depends on the rate of change in potential.

Flux-Corrected Transport Algorithm
The ∆Γ expression in the Leap-Frog section is an operator representing the
fourth order FCT process. “High-order” fluxes improve the spatial resolution
of the time step, but can cause numerical oscillations and lead to instabil-
ity. To limit these oscillations, “low-order” fluxes are used as an artificial
diffusion, specifically chosen to prevents numerical artifacts from high-order
methods to develop. The process at each time step is:

1. Find the ion and electron velocities.

2. Find the ion and electron low and high order fluxes, FL and FH .

3. Define the anti-diffusive flux, A ≡ FH − FL

4. Limit A so as not to produce or enhance extrema in step 5.

5. Find time advanced populations with the limited A.

The low order flux is given by an “upwind” differencing scheme and an
ad-hoc diffusion:

ΓLϕ(l, k + 1/2) =
1

2
[vϕ(l, k + 1) + vϕ(l, k)]FDC(l, k + 1/2)

−1

8

∆ϕ

∆t
[F 0(l, k + 1)− F 0(l, k)]

ΓLy (l + 1/2, k) =
1

2
[vy(l + 1, k) + vy(l, k)]FDC(l + 1/2, k)

−1

8

∆y

∆t
[F 0(l + 1, k)− F 0(l, k)]

where FDC represents the flux from an “upwind” donor cell. The high-order
flux is a fourth order finite differencing known as “ZIP” form:

ΓHϕ (l, k + 1/2) =
2

3
[vϕ(l, k)F (l, k + 1) + vϕ(l, k + 1)F (l, k)]

− 1

12
[vϕ(l, k)F (l, k + 2) + vϕ(l, k + 2)F (l, k)

+ vϕ(l, k − 1)F (l, k + 1) + vϕ(l, k + 1)F (l, k − 1)]

ΓHy (l + 1/2, k) =
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3
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+ vy(l − 1, k)F (l + 1, k) + vy(l + 1, k)F (l − 1, k)]

With these two fluxes, we define A(l, k) = ΓH − ΓL, and then limit this
flux as described in [5] to prevent the formation of new extrema, or the en-
hancement of existing extrema. We use a centered differencing method to
represent the convection velocities of the ions and electrons.

Numerical Dissipation in Potential
To prevent numerical instability in advancing the potential, dissipation is
added. This also acts as the physical nonresonant dissipation which limits
the frequency sweeping observed in HEIs. We advance the potential in the
leap-frog manner as:

Φt−∆t/2 =
1

2

(
Φt + Φt−∆t

)
Φt+∆t/2 = Φt−∆t/2 + ∆tΦ̇t − (−1)k∆tν∇2kΦt

Φt+∆t = Φt + ∆t ˙Φt+t/2 − (−1)k∆tν∇2kΦt+t/2

k sets the dissipation length scale, and adjustment of ν sets the nonresonant
dissipation for limiting the frequency sweeping.

4 Results
This simulation reproduces many of the experimentally observed phenomena
in CTX. Unstable initial density profiles are set, and an initial perturbed
potential is made of randomly phased sinusoidal oscillations.

From these initial conditions, large amplitude waves develop. These modes
are radially broad and dominantly m = 1 in structure. The evolution of
the individual electron populations displays the propagation of phase-space
“holes”, starting with the lower energy populations and moving inward with
the resonance as the mode frequency increases.

This phase-space evolution produces frequency-sweeping dynamics similar
to the experiment. This is comparing by looking at the spectral content of
the potential fluctuation in time.

5 Particle Conserving
Source/Sink

To reproduce dynamics related to driven turbulence, we require a mecha-
nism to maintain the unstable profile. Grierson implemented a conservative
source and sink of particles and electron energy[6]. In normalized magnetic
coordinates, the particle continuity equation becomes:

∂N̂

∂t̂
+

∂

∂ϕ
(N̂vϕ) +

∂

∂y
(N̂vy)

= 1.8D̂hDy
2∂

2N̂

∂ϕ2
+ 3.2D̂

∂

∂y

[
hD

∂

∂y
(y4N̂)

]
+ D̂Dshs

hs and hD are the normalized source and diffusion profiles. Conservation re-
quires the number of particles in the volume to be fixed, therefore the volume
integral of the above equation yields:

Ds =
−
∫

1.8hDy
2∂2N̂
∂ϕ2 − 3.2 ∂∂y

[
hD

∂
∂y(y4N̂)

]
d2x∫

hsd2x

At every time step Ds is calculated, and the ion and electron grids are up-
dated with a source/sink grid that sums to zero. For the electrons we are
also conserving energy, so the grid integrated over µ sums to zero as well.

Notice that D̂ is on all the new terms, so the effect of this source/sink can be
tuned simply by varying this parameter. A value for D̂ is found that main-
tains a slightly unstable density profile and results in the onset of radially
broad convective cells.

Large quasi-coherent structures are observed to form and rotate azimuthally
in the electron magnetic drift direction. Further study of the simulation in-
cluding this source/sink is required.

Current-Collection Feedback
Recent experiments have shown that the application of current-collection
feedback in interchange turbulent plasmas can locally amplify or suppress
broadband fluctuations (NI2.00001 9:30 AM, Wednesday, Bissonet). We
are extending this simulation to include the effects of current collection.

In this feedback, the potential to a capacitively coupled biasing electrode
is varied in proportion to the floating potential fluctuations measured by a
sensor. The current driven by this system is given as the difference between
the applied bias and the local potential fluctuations, divided by the sheath
resistance:

I ≡ ṼA − ṼP
RS

≈
(
|G|eiθ − 1

)
ṼP

RS

If the bias to the electrode is far from the plasma potential, probe theory
tells us varying the bias will only vary the number of electrons collected. We
propose including a point source/sink of electrons proportional to the differ-
ence in applied bias and local potential. This work is currently underway.
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