
Characterizing 
Interchange Turbulence In 
Dipole Confined Plasmas

B.A. Grierson, M.W. Worstell, S. Stattel, M.E. Mauel

APS DPP 2006, Philadelphia, PA

http://www.apam.columbia.edu/ctx/ctx.html

CTX
1

http://www.apam.columbia.edu/ctx/ctx.html
http://www.apam.columbia.edu/ctx/ctx.html
http://www.apam.columbia.edu/ctx/ctx.html


Abstract
The dipole magnetic field has closed field-lines without 
magnetic shear, and this confinement concept allows large 
fluting instabilities.  When dipole-confined plasma is 
produced with ECRH, fast Hot Electron Instabilities (HEI) 
appear at low densities, and slower turbulent fluctuations 
occur at higher densities.  The global mode structure of the 
fast HEI instability and centrifugal interchange are 
understood.  However, the characteristics of the turbulent 
interchange fluctuations (that occur between HEI bursts 
and when the HEI is suppressed by fueling) are less well 
understood.  These low frequency, non-stationary 
fluctuations exhibit a power-law like turbulence spectrum 
and intermodal coupling.  Correlation analysis, modal 
decomposition Hilbert methods, time-frequency 
spectrograms, and bicoherence are used to characterize 
interchange turbulence in a dipole and to form a basis for 
understanding nonlinear plasma mixing.
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Fixed Boundary 
Interchange Instability

• Fluting Instability

• Drift-resonant fluctuations ω~mωd .

• Interchange of flux tubes in a dipole is associated with 
significant compression.      B~1/L3.

• Classic Mechanism:
Stable/Unstable
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Linear Interchange Solution.

Velocity Field
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Turbulence In Dipole 

• Global mode structure of Hot Electron 
Instability in low density plasma has been 
characterized.*

• The low frequency fluctuations between 
HEI bursts and in ‘High Density’ have not 
been characterized.

• Correlation studies between measurements 
at different locations (L,λ,φ) in the plasma 
are required to extract correlation times, 
lengths, and mode structure.

5
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Dipole Plasma Density 

7

Isat~1000 times more in High Density

H2
  In ‘Low Density’, 
fueling decreases 
the characteristic 
time between HEI 
bursts.

  Fueling stabilizes 
the HEI bursts.  

Fluctuations order 
unity.
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Floating Potential Fluctuations
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Spectra

Power Spectrum
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•Increased gas 
pressure causes 
change in the spectral 
characteristics of the 
fluctuations.

•Causes a trend 
towards power-law 
like spectra.
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Gas Puff

Spectrogram reveals the 
dynamic change in floating 

potential fluctuations.
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Transition to High Density
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•  15kHz m~1, rigidly-rotating mode 
with k||~0 marks the transition to the 
High Density regime.
• The waveform has a nonlinearity, 
hence the m~1, where probes 
separated azimuthally record a 550 
phase shift.
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Fourier Statistics

α1,2 ≡ tan−1

(
"[Ĉ1,2(ω)]
#[Ĉ1,2(ω)]

)

S(t)→FFT→ Ŝ(ω)

< γ2
1,2 >≡ < |Ĉ1,2(ω)|2 >

< Ŝ1 >< Ŝ2 >

Ĉ1,2(ω) ≡ Ŝ1(ω)Ŝ∗
2 (ω)

Classic Fourier methods require 
signals to be stationary and 
linear, otherwise spurious 

harmonics will be generated to 
match nonlinear signals.  

In high density plasmas, the 
ensemble cross phase <α1,2>≈0 
(random phase), and squared 

cross-coherence <ϒ2
1,2>≈1% due 

to a non-existing linear mode.

Correlation analysis and mode 
decomposition can provide 

information about the dynamics.

< α1,2 >≡
∫

α1,2(ω)|Ĉ1,2(ω)|dω
∫

|Ĉ1,2(ω)|dω
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Bicoherence
S(t)→FFT→ Ŝ(ω)

b̂2(ω1,ω2) =
|B̂(ω1,ω2)|2

| < Ŝ(ω1)Ŝ(ω2) > |2| < Ŝ(ω1 + ω2) > |2

•Transform  a time series to 
the frequency domain.
•Create the Bispectrum over 
many records (ensemble 
average)
•Form power-weighted 
Bispectrum (bicoherence) 
after M samples have be 
taken.
•95% confidence for b2>3/M *

B̂(ω1,ω2) =< Ŝ(ω1)Ŝ(ω2)Ŝ∗(ω1 + ω2) >

< A >=
1
M

M∑

i=1

Ai

*V.Nosenko, J.Goree, and F.Skiff, Phys. Rev. E 73 016401 (2006) 
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The Analysis Procedure
•For the following figures, 730 records have 
been taken to calculate the bicoherence.

•The records overlap by 75% to accurately 
measure the biphase evolution.

•The frequency pair where the Max 
Bispectrum occurs is tracked in time, as well 
as the amplitude (BiAmplitude).

•The BiAmplitude is qualitative, and 
measures the intensity of mode-mode 
coupling in time.

•The frequency pairs record where, in 
frequency-space, the coupling occurs in time.

We are using a Fourier 
Mode technique to 
measure non-stationary 
fluctuations.  Dominant 
frequencies evolve 
during the discharge, 
making the bicoherence 
a ‘smeared-out’ 
statistical measure.
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Bicoherence
•Bicoherence Max at (f1,f2)=
(7,5)kHz indicating mode-
mode coupling (not 
harmonic).

•Rich coupling exists above 
statistical cutoff (0.004) 
across many frequency pairs 
(triangle-like region).

•5kHz mode coupled to 
7-40kHz modes (arrows).
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Tracked BiAmplitude, Phase

•Tracked pairs maintain a 
biphase close to zero 

(phase coupled)
• BiAmplitude displays 

intermittency, but 
decreases over time.

• Frequencies at Max 
BiSpectrum decrease 
with slope -5.3, -4.7.
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Correlation Functions

C1,2(τ) =
∫ T
0 S1(t)S2(t− τ)dt

√∫ T
0 S2

1(t)dt
∫ T
0 S2

2(t)dt

The time correlation function is defined as:

and can determine lag time and correlation time 
between two signals.                     

The lag time is the time by which 
signal 2 lags signal 1.  

τLag > 0→ Signal 2 Lags Signal 1
16

(τLag, τCorr)
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Correlation In Time
Multiple correlation functions can produce 

‘correlation in time’ contour plots.

17

< C1,2(τ) >=
1
M

M∑

i=1

C(i)
1,2(τ)

C1,2(t, τ) = [C(1)
1,2(τ), C(2)

1,2(τ), . . . , C(M)
1,2 (τ)]

Ensemble correlation can be formed.
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Cross Correlation C1,2(t,!)
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Hilbert Spectrum*

• Hilbert Transform given by: 

• Form Analytic Function:

• Instantaneous Frequency:

• Instantaneous Amplitude:

• The phase must be `unwrapped’ before 

differentiating.

Y (t) =
1
π

P

∫ ∞

−∞

X(t′)
t− t′

dt′

Z(t) = X(t) + iY (t) = a(t)eiθ(t)

ω(t) =
dθ(t)
dt

θ(t) = arctan

[
Y (t)
X(t)

]

a(t) =
√

X(t)2 + Y (t)2

* Proc. R. Soc. Lond. A (1998) 454, 903-995
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IMFs1

• In order to apply the Hilbert Transform, 
the time series must be of the class 
‘Intrinsic Mode Functions’.

• Envelope functions symmetric about the 
local zero.

• No positive minima or negative maxima.

• Same number of zero crossings as 
extrema, within one.

• Formed by ‘sifting the time series’
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Sifting Isat Data
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•The data is sorted into 
functions with intrinsic time 
scales that are inherent to 
the data.
•Each IMF has a frequency 
which is approximately half 
the previous IMF

Correlation Coefficients.

1.0 1.5 2.0 2.5 3.0 3.5 4.0

IMF Number

0.0

0.2

0.4

0.6

0.8

1.0

C
o
rr

. 
C

o
e
f.

7.8kHz Mode
4kHz Mode

22



Instantaneous Phase

Phase for Each IMF
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The frequency 
regimes are well 

separated.  A linear fit 
gives the average 
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Hilbert Spectrum
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IE and Spectrum
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Instantaneous Energy 
also records the highly 
energetic, intermittent 
bursts of activity.

Spectrum also displays 
a power-law scaling, 
similar to FFT.

h(ω) =
1
T

∫ T

0
H(t, ω)dt

IE(t) =
∫ ωN

0
H2(t, ω)dω
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Summary
• Using novel signal analysis techniques, the mode structure of a 

dipole-confined, high density, turbulent interchange mixing 
plasma has been investigated.

• This plasma displays a power-law frequency spectrum and 
intermittency, characteristic of a turbulent phenomena.

• Diagnostics have begun to probe the time-space correlation of 
structures in the plasma, and revealed transient correlation.  
This is markedly different from previous investigations.

• Hilbert Transform methods provide accurate measurements of 
dominant temporal modes, as well as more accurate 
measurement of frequency and power evolution in time than 
simple spectrograms.

• Bicoherence suggests that the dynamics are dominated by 
nonlinear phenomena.
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Future Work

• Implementation of new amplifiers providing 
real-time visualization of polar loss current, 
able to diagnose mode structure with high 
spatio-temporal resolution.

• Improved simulation code with parallel 
implementation (MPI, PETSc) providing high 
spatial resolution and inclusion of nonlinear 
terms.

∇ · [εB× (V ·∇)V] =
1
B

∂

∂y

[
ε

(
− ∂Φ

∂x

∂2Φ
∂y2

+
∂Φ
∂y

∂2Φ
∂x∂y

)]
− 1

B

∂

∂x

[
ε

(
+

∂Φ
∂x

∂2Φ
∂y∂x

− ∂Φ
∂y

∂2Φ
∂x2

)]

27


