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Abstract
The prospects of creating positron–electron plasmas confined in a stellarator
are discussed. A pure electron plasma would be created before the positrons are
introduced, to facilitate efficient injection and a long confinement time of the
positrons. Gyrokinetic simulations are presented suggesting that a positron–
electron plasma may be stable to low-frequency microturbulence if operated
well below the Brillouin limit, and transport may be neoclassical. If this is
the case, significant positron–electron plasma densities can be reached with
positron sources that exist today.

1. Introduction

Toroidal magnetic surface configurations, most notably the tokamak and the stellarator, are
the most successful confinement devices for fusion plasmas. Until recently, this family of
confinement devices had not been used to confine non-neutral plasmas, but now there is a
levitated ring trap, the prototype-ring trap [1],being used for pure electron plasma confinement,
and a stellarator, the Columbia non-neutral torus (CNT), being constructed to study pure
electron and partly neutralized plasmas [2]. A stellarator is a magnetic surface configuration
created entirely from external coils with no need for a plasma current or conductors inside
the plasma [3]. Stellarators have important advantages for the creation of the first confined
laboratory positron–electron plasmas, namely the ability to confine positrons and electrons
simultaneously in the same volume, at any degree of neutrality and at relatively high particle
kinetic energies, the ability to operate steady state, and the ability to operate at ultralow
densities. In this paper, we discuss some important criteria for the success of a confined
positron–electron plasma experiment. We present and analyse a two-step process of creating
positron–electron plasmas in a stellarator. The first step would be the creation of a pure
electron plasma with a/λD � 1 in the stellarator. Here, λD is the electron Debye length,
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λ2
D = ε0Te/(ne2). This step will be addressed in the CNT experiment. For the purposes of

this paper, we assume that this step is achievable [2]. The second step is the injection of the
positrons, which will be confined not only by the magnetic field but also by the space charge of
the electrons, which provides a force on the positrons pulling them towards the plasma centre.
We show that the collisional confinement would allow for the successful creation of confined
positron–electron plasmas with realistic positron sources. However, if the plasma becomes
turbulent, the confinement time will not be sufficient to guarantee significant accumulation
of positrons in the trap. We have begun to investigate the microstability of positron–electron
plasmas in toroidal magnetic configurations using the gyrokinetic simulation code GS2. We
present initial simulations in an axisymmetric (tokamak) configuration that show that the
plasma will be stable to low-frequency (ω � eB/me) waves if the plasma density is well
below the Brillouin density ne � nB = ε0 B2/(2me) [4]. Above the Brillouin density, we
observe an interchange instability which causes significant transport. If these results carry
over to a non-axisymmetric (stellarator) configuration, turbulent transport will not prevent the
success of the proposed approach to creation of laboratory positron–electron plasmas.

2. Properties and importance of positron–electron plasmas

Positron–electron plasmas are unique because of their perfect symmetry of mass and perfect
antisymmetry of charge. The perfect symmetry of quasi-neutral, equal temperature positron–
electron plasmas makes them the simplest possible quasi-neutral plasmas that one can study
analytically or numerically. The symmetry directly eliminates certain wave types, such as
(ion) acoustic waves, and consequently electrostatic drift waves [5]. Since the two species
evolve on the same spatial and temporal scales, accurate numerical simulations are easier to
perform for pair plasmas than for ion–electron plasmas.

The creation of a confined positron–electron plasma is an experimental challenge that has
not yet been met because of the relative weakness of available positron sources (as compared
with electron or ion sources). Hence, a comparison of theoretical and numerical predictions
with a confined positron–electron experiment has not yet been performed, although it would
clearly benefit our understanding of basic plasma physics significantly. The most significant
experimental achievements towards this goal are the studies of positron plasmas interacting
with electron beams [6], which were in good agreement with theoretical predictions.

Positron–electron plasmas are also thought to be important in a number of astrophysical
phenomena (see e.g. [7–9]), and this provides additional motivation for understanding the
dynamics of these plasmas better.

The study of positron–electron plasmas would also have an impact on fusion science. Hot
magnetized electron–ion plasmas have been studied intensely in magnetic fusion research for
50 years, and it has become clear that the behaviour of these plasmas is far more complex than
was anticipated in the early days of plasma fusion research. Transport of particles and heat
across the magnetic field occurs much more rapidly than can be accounted for by collisional
processes. The cross-field transport is dominated by turbulent mixing of the plasma across
the magnetic field lines, caused by waves that are unstable on small spatial scales, such as
electrostatic drift waves. These effects are clearly seen in numerical simulations, and good
agreement has been found between experiments and simulations. However, it is not clear that
these simulation models capture the basic physics accurately enough to predict the turbulent
transport of future fusion reactor devices. A positron–electron experiment would provide a
way to validate the physics capabilities of physics transport codes, since at least some of these
codes, e.g. the GS2 code used in this paper, can be made to simulate positron–electron plasmas
rather easily, including the effects of magnetic geometry such as curvature and shear.
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Figure 1. Scatter plots of ne and eφ/Te plotted versus the magnetic surface variable ψ .

3. Equilibrium of a single-component plasma

The equilibrium equation of a low-density, ne � nB = ε0 B2/(2me) [4], pure electron plasma
in a magnetic surface configuration is [2]:

ε0∇2φ = eN(ψ) exp

(
eφ

Te(ψ)

)
(1)

where ψ is a coordinate that labels the magnetic surface (i.e. each magnetic surface is
described by ψ = constant), φ is the electrostatic potential and e is the unit charge. Te

is the electron temperature, which is assumed constant on a magnetic surface, but which
may vary from surface to surface. N(ψ) is a magnetic surface function that has units of
density and is related to the actual density, which is generally not a magnetic surface function,
through ne = N(ψ) exp(eφ/Te(ψ)). By replacing e with −e, one finds the equivalent pure
positron plasma equilibrium equation. Numerical solutions of the equilibrium equation in two
dimensions have recently been extended from the a2/λ2

D < 100 regime reported earlier [10], to
a2/λ2

D ≈ 1000. Here, a is the characteristic smallest dimension of the plasma. The equilibria
studied here are on elliptical magnetic surfaces surrounded by a vacuum region and a perfect
conductor that matches a vacuum magnetic surface. For these small Debye length plasmas, the
density contours become more elongated than the magnetic surfaces, b/a ≈ 2.5, whereas the
magnetic surfaces have b/a = √

3. In figure 1 we show the normalized equilibrium density
ne and electrostatic potential eφ/Te as functions of the magnetic surface coordinate ψ . The
vertical scatter in each plot indicates the degree to which the quantity varies on a magnetic
surface. The electrostatic potential varies only slightly on a magnetic surface, although some
scatter is evident in the outer parts of the plasma. The density varies strongly on a magnetic
surface, particularly in the outer parts. However, the electrostatic potential is nearly constant
on any part of the magnetic surface that has appreciable density. This is illustrated in figure 2,
where we have excluded points that have a plasma density less than 10−3 of the central density.
The total fraction of electrons excluded in this figure is only 5 × 10−5.
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Figure 2. Scatter plots of ne and eφ/Te plotted versus the magnetic surface variable ψ , excluding
all points where n/n(0) < 10−3.

Calculation of these small Debye length equilibria were facilitated by elimination of round-
off errors and numerical under- and overflow problems associated with the exponential factor,
which varies by several hundreds of orders of magnitude over the computational domain when
a2/λ2

D ≈ 1000. The most important change is to write the solution φ as the sum of a large and
a small part, φ = φ0 + φ1, and solve the following equation for φ1:

ε0∇2φ1 = en0 exp

(
eφ1

Te

)
− ε0∇2φ0 (2)

with n0 = N(ψ) exp(eφ0/Te). For any realistic density, n0 is a well-behaved function, since
it approximates the density well, as long as eφ1/Te is of order 1 or less. This is true even
if N(ψ) and exp(eφ0/Te) separately vary by hundreds of orders of magnitude. Equation (2)
is solved iteratively using the same technique that was used to solve equation (1) [10]. The
initial φ0 is supplied by solving equation (1) iteratively until numerical problems arise. If the
iterative solution for φ1 grows large (because φ0 is not close enough to the actual solution
of the equation), one simply redefines φ0 as φ0 + φ1, recalculates n0, and starts solving for
a new φ1 with the updated version of equation (2). This process may be repeated until the
desired accuracy of the solution is obtained. The opposite limit, a2/λ2

D � 1 is physically and
computationally trivial; solutions are of the form ne = N(ψ), |eφ|/Te � 1 in this case.

4. Confinement time of single-component and partly neutralized plasmas

4.1. Confinement of single-component plasmas

The collisional particle confinement time of a pure electron plasma is approximately [2]:

τp ≈ τe
a4

λ4
D

. (3)
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The physics behind this scaling is as follows: each time a particle suffers a collision, it
takes a random step across the magnetic surfaces which is of the order of the deviation of
the particle’s guiding centre orbit from its magnetic surface. This type of transport is called
neoclassical transport. The guiding centre deviations from a magnetic surface are caused
by ∇B and curvature drifts, v∇B+R = (mv2

‖ + 1
2 mv2

⊥)∇B × B/(eB3), as well as E × B
drifts, vE = E × B/B2. The former result in deviations from a magnetic surface which are
proportional to v∇B+R/vE ∝ λ2

D , because the vE in a non-neutral plasma usually provides
an effective rotational transform of the guiding centres which exceeds that provided by the
magnetic field. The vE drift will tend to move the particle on a guiding centre orbit described by
φ = constant, so to the extent that φ varies on a magnetic surface, the particle will experience
excursions away from the magnetic surface that are proportional to δφ/φ. Parallel force
balance between the gradient of the pressure p = neTe and the electric field force implies
δφ ≈ p/(ene) = Te/e, so δφ/φ ∝ λ2

D . In a generic magnetic surface configuration, the
two effects will be of the same order. However, it should be noted that careful tailoring of the
magnetic field topology can reduce the v∇B+R deviations from the magnetic surfaces by several
orders of magnitude. Careful tailoring of the boundary conditions of φ outside the plasma can
also reduce δφ/φ significantly. Such an optimization would increase the confinement time
predicted in equation (3) by a large factor.

We plan to study the transport of particles in more detail using a particle-following code.

4.2. Confinement of partly neutralized plasmas

When positrons are injected into an initially pure electron plasma, the confinement properties
change. In this case, the Debye screening length λD is given by

λ−2
D = e2

ε0

(
ne

Te
+

n p

Tp

)
. (4)

Hence, the addition of a finite positron density will decrease λD . At the same time, the space
charge is reduced, so the electric field is reduced. The deviations from a magnetic surface due
to v∇B+R now scale with λ2

C = ε0Te/(e2|ne − n p|), a space charge Debye length, or ‘Coulomb
length’.

The existence of a positive species in addition to the negative species will allow the
plasma to shield out parallel electric fields more efficiently, so δφ/φ on each magnetic surface
decreases significantly, and the E × B drift will no longer cause significant deviations of the
particle guiding centres from the magnetic surfaces. Hence, the confinement of electrons is
now given by:

τp = τe
a4

λ4
C

, λ4
C = (ne + n p)

2

(ne − n p)2
λ4

D . (5)

As long as a/λC � 1, positrons will be confined much better than the electrons, by the space
charge potential in addition to the magnetic confinement.

Quasi-neutral ion–electron plasmas, which have λD � λC , usually develop an
electrostatic potential |φ| ≈ T/e where T is the temperature of one species, and the sign
of φ is determined by the details of the experiment (usually negative in toroidal plasmas). This
is the potential that develops to enforce ambipolar transport. Electrostatic fields of this order
imply that a/λC is close to 1, so we would estimate τp ∼ τe for such plasmas. In a generic
magnetic surface configuration without any symmetry, which is the basis of our transport
estimate, the confinement time may only be of the order of the collision time. In stellarators
optimized for neoclassical transport and in tokamaks (which have toroidal symmetry), much
longer confinement times can be achieved even when a/λC ∼ 1.
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5. Gyrokinetic calculations

In toroidal fusion plasmas, transport is generally not neoclassical, but is dominated by
turbulence driven by microinstabilities. We have begun to investigate the microstability
of quasi-neutral positron–electron plasmas in toroidal magnetic configurations. Although
drift waves and acoustic waves are not found in a pair plasma, it is not difficult to see
that the basic curvature-driven interchange instability threatens confinement. Straightforward
analysis shows that in the absence of magnetic shear, bad curvature induces an interchange
in a pair plasma with a growth rate that scales like γ ∼ vt/

√
RL , where vt is the thermal

velocity, R is the radius of curvature and L is the characteristic pressure gradient scale length
of the plasma; in the absence of other microinstabilities, the interchange is thus a strong
candidate for driving turbulence in a laboratory pair plasma confined with a magnetic field.
This instability is well-described by the gyrokinetic formalism [11, 12]. We use the GS2
nonlinear gyrokinetic code, which was developed and extensively benchmarked for fusion
plasma turbulence studies [13, 14], to perform a numerical study of the microstability of
toroidal pair plasmas. The GS2 code can be straightforwardly applied to pair plasmas by
specifying the mass of the singly charged ions to be equal to the electron mass.

It is easy to demonstrate the lack of drift waves or the pair-plasma version of the sheared-
slab ηi mode analytically and numerically. We have done this with GS2. The ηi mode is not
expected to be unstable in a pair plasma because it is essentially a destabilized ion acoustic wave,
which is not present in the laboratory pair plasma. Not all microinstabilities are thwarted by the
mass symmetry, however. Here, we show that, in principle, observable gyrokinetic turbulence
may be expected in a laboratory positron–electron plasma unless n � nB , where nB is the
Brillouin density [4]. The pair plasma creation method outlined in section 7 would result in
pair plasmas with n � nB , and hence turbulence would not be observed in such plasmas.
However, in principle n � nB pair plasmas could be created.

We consider the basic expectation for transport in a pair plasma that is unstable to
the collisionless interchange, in an axisymmetric, circular flux surface, low-β (tokamak)
configuration for which much numerical study has already been carried out [15]. In this case,
the density gradient R/Ln = 2.2, the temperature gradient R/LT = 6.9, the inverse aspect
ratio a/R = 0.36, the safety factor q = 1.4, the magnetic shear ŝ = 0.8, Ti = Te, and we
are considering turbulent radial heat and particle flux through the surface at r/a = 0.5. For a
conventional deuterium plasma, several benchmarked gyrokinetic simulation codes (including
GS2) predict an ion energy diffusion coefficient in this case of χi = 0.8ρ2

i vti /LT . The
instability which leads to this anomalous transport flux is the ion temperature gradient mode.

In a pair plasma with the same equilibrium characteristics, we find a much higher transport
rate in units of ρ2vt/LT for these parameters. In this case, the underlying instability is
the short-wavelength interchange mode. The energy diffusion coefficient for each species
is χi ∼ 150ρ2vt/LT . Additionally, we find a particle diffusion coefficient of D ∼ 50ρ2vt/Ln .
The larger dimensionless transport is due to higher nonlinear saturation amplitudes of the
turbulence. However, in physical units, the transport is only somewhat larger, since ρ2vt

is
√

3672 ≈ 60 times smaller than that of a deuterium plasma with the same temperature.
For realistic experimental values, the resulting transport rate would far exceed neoclassical
transport, and one would not be able to reach or sustain any appreciable positron density
with present positron sources. We have made no attempt at this point to optimize the
configuration for interchange stability, nor have we investigated non-axisymmetric (stellarator)
configurations, but we intend to do so in the future.

In figure 3, we show the maximum growth rate γmax versus plasma density in an
axisymmetric magnetic configuration which resembles a tokamak. This configuration has
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Figure 3. The growth rate of the most unstable mode versus normalized plasma density.

average good curvature and magnetic shear, both of which act to stabilize the interchange
modes in conventional ion–electron plasmas (and similarly in the positron–electron plasma).
The magnetic field BT = 1 T, the gradients are taken to be R/Ln = R/LT = 3, and the
remaining parameters are similar to the case above. The growth rate is maximized over all
k⊥ρ. (The peak value tends to be around k⊥ρ ∼ 0.2.)

If the transport is large when the interchange mode is destabilized, then figure 3 indicates
that there will be a maximum operating density. The physics behind the low-density cut-off
is as follows: as the density is lowered, the Debye length approaches and eventually exceeds
the thermal gyroradius. The key stability parameter is (ρ/λD)2 = 2n/nB where nB is the
Brillouin density, nB = ε0 B2/(2me) [4]. For low enough density, the positron–electron
interchange instability is stabilized by the finite Debye length, at reasonable values of R/Ln .
In the case studied, n/nB < 0.2 is sufficient for stability, but in general, this ratio depends
on R/Ln . Shorter density gradient scale lengths increase the maximum linear growth rate at
fixed density, shift the low-density threshold to lower density and lower the range of k⊥ρ of the
instability. That is, stable operation at steeper gradients requires a lower value of n/nB . We
compare the linear physics with results from conventional ion–electron plasmas by artificially
varying the electron to ion mass ratio. In figure 4, the maximized growth rate (normalized by
vt i /R) is plotted against ratio of electron mass to ion mass. Conventional plasma mass ratios
correspond to the left side of the figure, and the pair plasma is at unity on the x-axis, where
me = mi . The apparent asymmetry of the growth rate is due to its normalization to vti . Here,
we have taken the density to be high enough, n � nB , that Debye screening is unimportant.
The unique instability of the pair plasma is evident as the mass ratios become more similar.

6. Requirements for laboratory positron–electron plasma experiments

The most fundamental requirement for the success of any positron–electron plasma physics
experiment is to simultaneously confine several Debye lengths of each species in the same
volume:

λ2
De = ε0Te/(nee2) � a2, λ2

Dp = ε0Tp/(n pe2) � a2. (6)
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Figure 4. The maximized growth rate is plotted as a function of the mass ratio, as calculated by
the gyrokinetic code GS2.

This is a challenge because available positron sources are weak compared with the plasma
particle sources that are usually used in experiments. If we require the positrons to be relatively
cold, which favours a small Debye length and may increase confinement time and decrease
ionization of neutrals in the trap, the source rates drop off more dramatically. Available
positron sources are many orders of magnitude weaker than those of electrons. The most
intense continuous sources of relatively cold positrons, Tp ∼ 3 eV, are, to the best of our
knowledge, in the range of 108 positrons s−1 [16], with sources of 109 positrons s−1 expected
to be available in the near future [16, 17]. By comparison, 1 cm2 of thoriated tungsten wire
can thermionically emit of the order of 1019 electrons s−1 with Te < 1 eV. In the future,
arrays of high-field Penning traps may be able to store as many as 1012 positrons [20]. Such
a large nearly instantaneous source of cold positrons would make a positron–electron plasma
experiment highly likely to succeed. Our discussion here will focus on the more challenging
task of creating a positron–electron plasma using continuous sources of cold positrons at the
level reached today (S = 108 s−1) or projected for the near future (S = 109 s−1).

7. A method for creation of positron–electron plasmas

In order to accumulate sufficient amounts of cold positrons to satisfy λDp � a, confinement
must be excellent. This has been achieved in Penning traps [18] in several experiments,
but Penning traps cannot simultaneously confine positive and negative species. In a nested
Penning trap [19], one can simultaneously confine the two species in adjacent traps, which can
be arranged such that the two species overlap spatially, since the most energetic particles of
one species can climb the potential that is used to confine the other species. However, it can
be shown that the criterion in equation (6) cannot be satisfied in such a trap.

Stellarators trivially confine both species in the same volume. This is also true for the
magnetic mirror [5] and a combined Penning–Paul trap [20], both of which are potential
candidates for a positron–electron plasma confinement scheme. By comparison, the stellarator
will have much better confinement than a magnetic mirror,and can confine many more energetic
particles and much larger space charges than the Penning–Paul trap. The potentially low
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confinement time in a stellarator is a serious concern though. However, when λC � a, the
confinement time can be very long for both species, in particular the one that is the minority
species. Given the large difference in available sources for electrons and positrons, it is obvious
that one would want to operate with a surplus of electrons. Specifically, we will consider a
scenario where a pure electron plasma with a/λDe � 1 has already been created. Such a
plasma will necessarily have ne < nB . The method of creation of such plasmas will be a
near-term goal of the CNT experiment. For the purposes of this paper, we assume that this
goal has been successfully achieved and do not discuss it further. It may be possible to have
internal steady state sources of electrons, but we will show in the following that even without
such sources, one can successfully create positron–electron plasmas.

Once a pure electron plasma is created, and the plasma is separated from any electron-
emitting filaments, the positrons are injected from the edge. Pulled by the electrostatic
potential of the electrons, the positrons will diffuse inward through the same neoclassical
transport processes that make the electrons diffuse out. As long as the electrostatic field is
strong enough that −eφ/Tp � 1, the positrons will be very well trapped. As the positrons
accumulate, a quasi-neutral region will start to grow starting at the plasma centre, surrounded
by an electron-rich region which the positrons continue to diffuse through. However, as the
positrons accumulate, the confinement time of the electron plasma decreases because of the
neutralization. Unless electrons can also be simultaneously injected, the entire plasma will
decay away on the time scale given by equation (5). We now estimate the peak positron
density during this second phase, ignoring profile effects, which would require a much more
detailed calculation. Since ne < nB , we expect the interchange mode seen in our gyrokinetic
simulations to be stable, and that transport therefore is neoclassical. We assume that, at the
point where the positron density peaks, the positron confinement time is equal to the electron
confinement time, so that S = V nmax

p /τp, with τp given by equation (5). This is clearly very
conservative, but it guarantees that the positrons have had time to accumulate before the initial
electron density has decayed more than one e-folding time, τp, and that the positrons have had
one inward diffusion time (also τp) to diffuse to the centre of the electron plasma. Expressing
the plasma volume as V = 2π2a2 R, where a is an effective minor radius and R is an effective
major radius, 1/τe = √

2nee4 ln �/(12π3/2ε2
0
√

meT 3/2), we arrive at the following relation:

nenmax
p

(ne − nmax
p )2

= 6a2

√
2π ln �Rvth

S ≡ S̃. (7)

Here, vth = √
T/me. When S̃ � 1, n p ≈ ne, and the plasma reaches close to charge

neutrality. When S̃ � 1, n p ≈ S̃ne. It is encouraging that S̃ > 1 for realistic parameters. For
example, Te = 1 eV, S = 109 s−1, a = 0.1 m, R = 0.3 m, ln � = 15 yields S̃ = 12. For
currently available sources, S = 108 s−1, S̃ = 1.2. The peak positron density can therefore
be expected to be a significant fraction of the initial electron density. Thus, one will want to
maximize the initial density of the pure electron plasma, or more specifically, maximize the
number of electron Debye lengths. If S̃ is of order 1 or larger, the number of positron Debye
lengths at peak density will be about three times smaller than the initial electron density, and
therefore, if the initial pure electron plasma has a/λDe � 1, a/λDe � 1 and aλDp � 1 will
be simultaneously achieved after about one electron plasma confinement time.

8. Other experimental concerns

In addition to having excellent positron confinement, there are several other requirements
that must be met by any positron–electron plasma experiment, regardless of the particular
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confinement method, in order to create an uncontaminated positron–electron plasma. Some
of these have been considered in previous publications on this topic [20].

8.1. Ion contamination

Neutral atoms may become ionized in the plasma, and the resulting positive ions will become
trapped by the electric potential just as the positrons. One may be able to tolerate a small
fraction of ions without changing the dynamics of the positron–electron plasma significantly,
but if the goal is to study electron–positron plasmas, then the ion fraction must not be large.
Hence, the source rate of ions must be much less than the source rate of positrons:

S � V nnne〈σv〉 (8)

with nn being the neutral density, V the plasma volume and 〈σv〉 the rate coefficient for
collisional ionization. If equation (8) is satisfied, then ions will not significantly contaminate
the positron–electron plasma. We estimate the severity of this constraint by assuming that the
neutrals consist of atomic hydrogen at room temperature, and that the plasma has dimensions
R = 0.3 m, a = 0.1 m, density ne = 1013 m−3, and the source rate of positrons is 109 s−1. The
required vacuum neutral pressure pn is a strong function of temperature [21]. At Te = 1 eV,
pn � 4.6 × 10−6 Torr. At 2 eV, pn � 3.7 × 10−9 Torr. For Te > 5 eV, the temperature
becomes less important and pn � 10−12 Torr is required. Although this constraint is non-
trivial, there are numerous non-neutral plasma experiments that operate in a regime where
equation (8) is satisfied, partly because significant ionization leads to an uncontrolled, and
usually undesirable, density rise in Penning trap pure electron experiments, so care is taken to
avoid it.

8.2. Positron annihilation on plasma electrons and neutrals

In addition to diffusion, other positron loss mechanisms may be important. Annihilation
on plasma electrons is only significant if low temperatures and relatively high densities are
achieved. For example, if Tp = Te = 1 eV and ne ≈ n p = 1013 m−3 in an R = 0.3 m,
a = 0.1 m stellarator, there will be ∼5 × 106 annihilations s−1 [22], still orders of magnitude
less than source rates of 108–109 positrons s−1, but plenty to make annihilation gamma-ray
detection a potentially useful diagnostic. Positrons may also annihilate on neutral atoms, but
this loss mechanism is negligibly small at pn < 10−9 Torr, as long as the trap is free of
hydrocarbons [20].

9. Future work

Confinement of pure electron plasmas will be studied experimentally in the CNT device being
constructed at Columbia University. If this experiment succeeds in producing a � λDe pure
electron plasmas with confinement τp ≈ τe(a/λDe)

4, then a � λDe and a � λDp can
be simultaneously reached even with rather modest positron sources in a similar stellarator
experiment devoted to positron–electron plasma physics. A conceptual, optimized design of
such an experiment can be made on the basis of the requirements and tools described here.
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