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Equilibrium of an electron plasma confined on magnetic surfaces
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The difficulty in solving the equation for the electrostatic equilibrium of a pure electron plasma
confined on magnetic surfaces can be reduced by separately solving for a part of the electric
potential that is constant on the magnetic surfaces. Freedom exists in the choice for the constant part
of the potential. Here a particular choice and how it simplifies the solution of the the electrostatic
equilibrium problem are discussed. © 2005 American Institute of Physics.
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Although toroidal magnetic surfaces have been used for
about half a century to confine quasineutral plasmas, propos-
als to confine non-neutral plasmas on magnetic surfaces are
far more recent.'? The theory of pure electron plasmas con-
fined to magnetic surfaces differs significantly from that of
quasineutral plasmas. For example, the equilibrium of
quasineutral plasmas is primarily determined by solving
force balance, V}:fx B with V X é:,uof. The electric field
is determined by making the transport ambipolar, and the
charge imbalance is given by p=50€-ﬁ. In pure electron
plasmas, the plasma density is sufficiently low that its cur-
rent has a negligible effect on the magnetic field. Force bal-
ance and rapid heat transport along the magnetic field lines
determine” the form of the electron density,
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where ¢ is the toroidal magnetic flux enclosed by a magnetic

surface and T(i) is the electron temperature. The primary
equilibrium equation is the equation for the electric potential
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with E=—-V®. The theory of equilibrium for pure electron
plasmas is developed in Refs. 2 and 3.

The equation for ® is not determined until two functions
of ¢ are specified, N(¢) and T(i). The specification of the
function N() presents practical difficulties because it differs
from the actual electron density n(x) by the exponential fac-
tor exp(e®/T). The same exponential factor also makes the
equation highly nonlinear and difficult to solve when e®/T
> 1. Both difficulties are ameliorated by first solving for a
part of the electric potential that is constant on the magnetic
surface ®y(1), and then finding the difference between the
correct potential and the part that is constant on the surfaces,

D(F) = D) - P[Y()]. 3)

Much freedom exists in the choice of the potential ®,(¢) and
in the associated part of the electron density 7(i), which is
typical electron density on a ¢ surfaces. A choice of ®y(1)
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and 7(y) will be given which simplifies the equilibrium
problem.

Although neither ® (1) nor 7(1) is a surface average of
the potential or the density, it is useful to define the average
on a magnetic surface that encloses toroidal flux . If
(¢, 0, ¢) are any well behaved coordinates and J the coordi-
nate Jacobian, an average over a magnetic surface of a func-
tion f(x) is defined by
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V' (p)=¢ TJdOd e is the ¢ derivative of the volume enclosed
by a magnetic surface.

To have a well-defined set of equations (1) the parts of
the potential and the electron density that are constant on the
i surfaces, @, and 7, must be related to each other and (2)
the typical, or constant part of the, electron density 7 must be
related to the actual electron density n(x).

A natural relation between the part of the electric poten-
tial that is constant on the magnetic surfaces ®,() and the
typical electron density on a ¢ surface 7(¢) is

(V2Dg) = < 7(y), (5)
€
where
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where g¥/= €¢- €¢ is a component of the metric tensor.
A natural relation between the typical electron density
7(1) and the actual electron density n(x) is

&
n@=mww4%ﬂ. ™

This equation is equivalent to defining the typical electron
density to be 7(y) =N(p)exp(ed,/T). Since 7 is a typical
density on a i surface, it is advantageous to use 7(), in-
stead of N(1), to specify the density.
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The solution to the differential equation for ®(i) can be
given as an integral. The effective charge enclosed by a ¢
surface is

v
Q) =- ef 7(pV'dif, (8)

0

though Q(#) is generally not the actual charge enclosed by
the surface. The constant part of the potential is
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where ®((0) is the value of the constant part of the electric
potential on the magnetic axis, the curve on which =0.
Near the magnetic axis ¢—0, analyticity implies V' con-
stant, (g""yoc 4, and Q = i)

Using the natural relations as the definitions for the con-
stant part of the potential ®(¢) and the typical density 7(),

the equation for the variable part of the potential CIB()?) is

obtained from the requirement that ®=®,+® obeys the
equation V>®=en(x)/¢,. Letting

7D = 2V (), (10)
which implies 7(i)=(7(x)}, one finds that
D - e = = ). (11)

This equation is the minimum of the energy

> b -
W:f %(VCD)2+ TyTexp(%) - 7ed (dx. (12)
The first two terms of the energy integrand are always posi-
tive since the typical electron density 7(i) is positive. The

last term in the integrand can be of either sign because both

7(%) and ® can have either sign.

Equation (11) can be solved directly, though it can be
simplified in a number of limits. For example, Eq. (11) is
easily solved when the electron density is sufficiently low so
that the Debye length, N3(14) =Te,/(¢*7), is long compared

to the spatial gradient scale a, or more precisely if )\j

Xexp(—e<1~>/ T)>a§. In this limit the solution to Poisson’s
equation €V>®=en differs by a small amount compared to
T/e from the solution to Laplace’s equation €,V>®=0.
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Laplace’s equation is equivalent to (e/e)V2D=—7().
Pedersen’ has noted that when the Debye length is long and
e®/T|<1.
Equation (11) can then be approximated as (e,/e)V2®
==7(x)+ 7).

When e®/T is positive and sufficiently large for the

the plasma is surrounded by a good conductor,

term 77T exp(e®/T) to be large, the minimum of the energy
W is given by a balance of the last two terms, which means
exp(e®/T) = 7/ 7, where 7 is positive.

In locations where 7 is negative, the spatial gradients
must be sufficiently sharp for the V2® term in Eq. (11) to
provide a balance, which implies the electron density can
vary rapidly along the magnetic field lines in regions where
7n<0.

Equation (11) can be solved by using one of the limiting
cases that has been discussed except in boundary layers that
have a thickness of order a Debye length A, In general,

obtaining a solution to Eq. (11) for ®(x) should be of com-
parable difficulty to solving the equilibrium equation in the
limit where the Debye length is comparable or longer than
the size of the plasma, which is the easier limit.

The determination of a part of the electric potential that
is constant on the magnetic surfaces produces three simplifi-
cations. First, the typical electron number density on a mag-
netic surface 7(i) is a more natural quantity for specifying
equilibria than is N(¢), which can differ by many orders of
magnitude from the electron density at all points on the ¢
surface. Second, qualitative features of equilibria are more
easily derived—for example, the qualitatively different be-
havior of equilibria in regions where 7= —(¢g,/e)V*®y() is
positive and negative. Third, numerical solutions for equilib-
ria should be simpler when the electron density is sufficiently
large so that the Debye length is much shorter than the
plasma radius.
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