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The density limit for electron plasmas confined by toroidal magnetic surfaces is investigated. In a
cylinder, the well-known limit is the Brillouin density, nB#!0B2 /2me. In an axisymmetric torus, the
confining region shifts outward in major radius, and this shift is shown to equal half the plasma
radius when n /nB$ "2a /R0, where "=1/q is the rotational transform of the magnetic field and a /R0
is the inverse aspect ratio of the torus. In a nonaxisymmetric torus, electron confinement is found to
be lost due to stochasticity effects when n /nB$!"2 /8M2"!a /R0"2 /#MN. The asymmetry amplitudes
#MN are the fractional variations in n /B2 on a magnetic surface in the poloidal mode number M and
the toroidal mode number N$ "M. © 2005 American Institute of Physics.
%DOI: 10.1063/1.2084827&

As is well known, but also shown below, the density of a
pure electron plasma that is confined by a magnetic field is
limited by the Brillouin density,1
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When the electrons are confined by toroidal magnetic
surfaces,2,3 it will be shown that density limit can be much
lower than the Brillouin limit. The reduction can be espe-
cially large when the surfaces are toroidally asymmetric as in
a stellarator.

A density limit occurs when the inertial forces associated
with the E$B flow of the electrons become sufficiently
strong compared to the !$B force. If the electron tempera-
ture is a spatial constant, the electron force-balance equation,
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can be rewritten as
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Both the effective electric potential,
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and the effective magnetic field,
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depend on the electron inertia. It is the inertial effect on the
effective magnetic field that reduces the limit on the density
to a lower value than that found by Brillouin. The relation
between electron density and the electric potential is given
by Poisson’s equation,
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The electron density is so low in a pure electron plasma that
it can carry insufficient current to modify the magnetic field.
Consequently, "$B=0.

The Brillouin density limit is obtained for zero pressure,
p=nT=0, electrons with constant density that are confined in
a cylinder in a magnetic field B=Bẑ. Poisson’s equation im-
plies %= !en /4!0"r2. Writing !=r'!r"(̂, one finds Eq. !3"
can be written as '2− !eB /me"'+e2n /2me!0, which has no
solution if n)nB. The intuitive explanation for the Brillouin
limit is that the electrostatic repulsion, the electron pressure,
and the centrifugal force nme&

2 /r are all radially outward;
only the en!$B force is radially inward. Once the velocity
& is sufficiently large that the centrifugal force is comparable
to en&B, a flow velocity & can no longer be found that gives
force balance.

If an electron plasma is confined by magnetic surfaces
then these surfaces must be toroidal and the magnetic field
can be represented as4

2*B = "+ $ "( + "!+" " , $ "+ . !7"

The magnetic surfaces are constant + surfaces since
B ·"+!x"=0, where + is the toroidal magnetic flux enclosed
by a magnetic surface, ( is a poloidal angle, and , is a
toroidal angle. The rotational transform " is the inverse of the
tokamak safety factor, q!+"=1/ ". If "=N /M, the magnetic-
field lines close on themselves after M toroidal circuits and N
poloidal circuits. Such + surfaces are called rational mag-
netic surfaces.

Both the effective magnetic field B* and the electron
fluid velocity ! lie in the constant %* surfaces. This follows
from Eq. !3", which implies that B* ·"%*=0 and that
! ·"%*=0. Consequently, the electron flow remains confined
in a toroidal region only if the field lines of B* remain con-
fined. We will find that the loss of B* magnetic surfaces can
provide a more stringent limit on the electron density than
the Brillouin limit.
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If the density limit set by the loss of the B* magnetic
surfaces is far below the Brillouin limit, then the field lines
of the B* field can be found by perturbation theory. Let h!x"
be any nonconstant function that satisfies B* ·"h=0, then the
constant-h surfaces are the magnetic surfaces of B*. If one
writes, h=h0!+"+#h, then to first order in the difference be-
tween B* and B the deviation #h is given by B ·"#h=−!B*
−B" ·"h0!+". Using Eq. !7" to rewrite B ·"#h, one finds
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The dominant effect on the loss of B* surfaces is reso-
nances between terms in the decomposition of
B* ·"+ /B ·", in a Fourier series in ei!M(−N," and the
magnetic-field lines of the field B. The resonances occur at
the rational surfaces where "!+"=N /M. Near resonances one
can write B* ·"+=−!me /e"!"$!)" ·"+. To show this, note
that B* ·"+=−!me /e"!"$!" ·"+, and !"$!" ·"+="
$ !!$"+", but !$"+= !&) /B"!B$"+"− !"%* ·"+"
$!B* /B*

2"+ !B* ·"+ /B*
2""%*. Consequently, keeping only

the lowest-order terms involving the electron density !"
$!" ·"+= !"$!)" ·"+−B ·"!"% ·"+ /B2". The term
B ·"!"% ·"+ /B2" automatically vanishes at resonances, so
the only term one needs to retain is !"$!)" ·"+.

Equation !8" for #h can be rewritten using three results:
first, B* ·"+=−!me /e"!"$!)" ·"+; second, !"$!)" ·"+
= !B$"+" ·"!&) /B"; third, the ( and , angles in the
magnetic-field representation of Eq. !7" can be chosen so

2*B = -0!G " , + I " (" , !9"

for a locally curl-free magnetic field. G is the current pro-
ducing the toroidal magnetic field, and I is the toroidal cur-
rent enclosed by the magnetic surfaces.4 The rewritten Eq.
!8" is
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In stellarator confinement I=0, and in axisymmetric systems
$ /$,=0; the term involving I also does not contribute. For
algebraic simplicity, we will ignore terms involving I in the
remainder of the paper.

The parallel flow is determined by the condition that
" · !n!"=0, which implies B ·"!n&) /B"=−" · !n!!". When
n.nB, the divergence of the perpendicular flow is given by
" · !n!!"=B$"% ·"!n /B2". The electric potential is a func-
tion of + alone when %/T /e, which is equivalent to the
electron plasma having many Debye lengths, then
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Variations in the geometry, which cause the electron density
n to vary on the magnetic surfaces,5 and variations in the
magnetic-field strength on the magnetic surfaces can both
drive resonant Fourier terms in !"$!)" ·"+ that are propor-
tional to n /nB. These terms cause a loss of confinement when
they are sufficiently large to destroy the surfaces of the ef-
fective magnetic field B*.

Equations !10" and !11" can be combined into a single
equation for the perturbation #h:

' $

$,
+ "

$

$(
(2

#h = −
me

e
!-0G"2$2!n/B2"

$(2

d%

dh0
'dh0

d+
(2

.

!12"

The potential %, which in the unperturbed state is a function
of + alone, has been written as %%h0!+"&.

In axisymmetric pure electron plasmas,2 Eq. !12" for the
perturbation to the lines of the B* field is particularly simple.
Letting h0=+ and #h=#+, Eq. !12" implies
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The electric potential and the flux can be approximated by
their cylindrical forms, %= !en /4!0"r2 and +=B0*r2, where
r is the minor radius of the torus and B0 is a typical
magnetic-field strength. This approximation yields
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The variation of the field strength can be approximated as
!B0 /B"2=1+2x /R0 with x#R−R0, which is the difference
between the local major radius, R, and the major radius of
the magnetic axis, R0. One can also write -0G=2*R0B0.
Letting +*=++#+, one has +*=*B0*!x−xs"2+z2+ where the
outward shift of the magnetic axis of the B* field relative to
the axis of the B field is given by

xs =
R0

2"2

n
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If one takes the equilibrium limit to be when the axis shift is
half the minor radius a then the limiting density is n /nB
= "2a /R0.

To calculate the perturbation in a nonaxisymmetric
plasma, define the perturbation amplitudes #MN of the asym-
metry by
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,n- is the average density on the + surface, and B0 is a
typical magnetic field. Linearity implies that one perturbing
coefficient #MN can be considered at a time. To obtain a
nonsingular perturbation equation, let h0!+"= !+−+MN"2 /2,
where "!+MN"=M /N. Then,
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where "!#d" /d+ evaluated at +MN.
The derivative of the potential d% /dh0 can be expressed

in terms of the average electron density ,n- on the rational
surface +MN. The electron density is given by Poisson’s
equation, en /!0=!2%, where !2%!h0"= !d2% /dh0

2"!"h0"2

+ !d% /dh0"!2h0. As +→+MN, one finds that !2%
= !d% /dh0"!"+"2. The typical field strength is defined by
B0#-0G / !2*R0" with R0 the major radius of the magnetic
axis of B !the curve +=0", the average density by ,n-
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#!!0 /e"!d% /dh0",!"+"2-, and the radius squared of the
resonant rational surface by a2#,!"+"2- / !2*B0"2.

Using the expressions of the last paragraph, #h can be
written as 4#h=02 cos!N,−M(", where

02 = 2
#MN

"!2 'R0

a
(2 ,n-
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. !18"

The equation for the perturbed surfaces of B*, which is h
=h0+#h=const, then yields

+ − +MN =
s

/s/
0021s2 − sin2'N, − M(

2
(2 . !19"

The surfaces of the B* field are labeled by the constant s, and
the identity cos!1"=1−2 sin2!1 /2" was used. The quantity 0
is the half-width of the magnetic islands in the B* field. The
B* magnetic surfaces are lost when the islands from adjacent
rational surfaces overlap.6 The difference in the rotational
transform between neighboring rational surfaces, #", is #"
= !N /M"−N / !M +1"= !N /M" / !M +1"$ " /M. Island overlap
occurs when #"=2"!0. Consequently, equilibrium is lost due

to the loss of surfaces of the B* field when the average den-
sity ,n- on the magnetic surfaces satisfies
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