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Presented for the first time are numerical solutions to the three-dimensional nonlinear equilibrium
equation for single-species plasmas confined on magnetic surfaces and surrounded by an
equipotential boundary. The major-radial shift of such plasmas is found to be outward, qualitatively
similar to the Shafranov shift of quasineutral plasmas confined on magnetic surfaces. However, this
is the opposite of what occurs in the pure toroidal field equilibria of non-neutral plasmas !i.e., in the
absence of magnetic surfaces". The effect of varying the number of Debye lengths in the plasma for
the three-dimensional !3D" model is in agreement with previous 2D calculations: the potential varies
significantly on magnetic surfaces for plasmas with few Debye lengths !a!"d", and tends to be
constant on surfaces when many Debye lengths are present !a#10"d". For the case of a conducting
boundary that does not conform to the outer magnetic surface, the plasma is shifted towards the
conductor and the potential varies significantly on magnetic surfaces near the plasma edge. Debye
shielding effects are clearly demonstrated when a nonuniform bias is applied to the boundary.
Computed equilibrium profiles are presented for the Columbia Non-Neutral Torus #T. S. Pedersen,
A. H. Boozer, J. P. Kermer, R. Lefrancois, F. Dahlgren, N. Pomphrey, W. Reiersen, and W. Dorland,
Fusion Sci. Technol. 46, 200 !2004"$, a stellarator designed to confine non-neutral plasmas. © 2005
American Institute of Physics. #DOI: 10.1063/1.1928248$

I. INTRODUCTION

The confinement of non-neutral plasmas on magnetic
surfaces is a relatively new area of study. This may be due to
the generally complex and expensive devices required to
produce magnetic surfaces !stellarators and tokamaks", and
to the great success of Penning traps at confining single-
species plasmas. Using a remarkably simple coil set !four
circular coils" to generate magnetic surfaces, the Columbia
Non-neutral Torus !CNT" is the first stellarator designed spe-
cifically to study the confinement of non-neutral and partially
neutralized plasmas.1

While Penning traps are limited to the confinement of
like-charged particles, a magnetic surface configuration such
as that of a stellarator can confine plasmas of arbitrary
neutrality.2

This type of device is capable of exploring a wide range
of new physical phenomena with relevance to basic plasma
physics, particle physics, and fusion science. By introducing
positrons into an electron plasma confined on magnetic sur-
faces, a plasma can be formed in which positrons are con-
fined not only by the magnetic surfaces, but also by the po-
tential well created by the electrons.3 Injecting antiprotons
into a positron plasma may be a way of producing large
quantities of neutral antimatter, providing an opportunity for
detailed measurements of the energy levels of antihydrogen.
A partially neutralized plasma generates large electric fields;
the effects of such fields on plasma confinement in a stellar-
ator have not yet been studied.

The first physics goal of the CNT, which has recently
come online, will be the confinement of pure electron plas-
mas on magnetic surfaces. A direct comparison between the

actual experimental equilibria and those calculated from
theory requires a numerical algorithm in three dimensions
that can properly incorporate realistic boundary conditions
on the electric potential. In this paper we describe the imple-
mentation of such an algorithm and discuss computational
results for a variety of magnetic surface and boundary con-
figurations, including those of the CNT.

II. THEORY

The equilibrium of a low density !n$nB=%0B2 /2me
!Ref. 4" and n$%0Bc /ae" electron plasma confined on mag-
netic surfaces is described by the Poisson–Boltzmann equa-
tion for the electrostatic potential & !Ref. 5",

!2& =
e

%0
N!'"exp% e&

Te!'"& , !1"

where ' is the magnetic surface coordinate !( and ) will be
used throughout this paper as the toroidal and poloidal
angles, respectively". We have the freedom to prescribe
N!'", which, along with the exponential term, determines the
density. The two upper limits on density given above ensure,
respectively, that the convective term in the force balance is
negligible and that plasma currents will not alter the exter-
nally imposed magnetic field.

We express the temperature as Te!'"=T0*!'", where
*!0"=1. Except where noted, results presented in this paper
are for flat temperature profiles, *!'"=1. We expect a
roughly uniform temperature due to rapid cross-surface heat
transport.6
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The equilibrium equation is given by Poisson’s equation
combined with a parallel balance between the electrostatic
force and the pressure gradient !in other words, a force bal-
ance along each magnetic field line". Each field line maps out
a magnetic surface, a surface over which the field line comes
arbitrarily close to every point. A pure toroidal field, which
does not possess magnetic surfaces, exhibits very different
equilibria7 from those of Eq. !1".

Equation !1" can be nondimensionalized8 as

!̃2&̃ = s!'"exp#&̃/*!'"$ = ñ , !2"

where &̃=e& /T0, s!'"=N!'" /N!0", x̃=x /sD, sD

='%0T0 /N!0"e2, and ñ is a dimensionless density. The size
of the plasma is measured in units of the characteristic
scale length sD which we relate to the Debye length
!"d='%0Te /ne2" at '=0, (=0,

sD = "D!' = 0,( = 0"exp(−
&̃!' = 0,( = 0"

2
) . !3"

The length sD is the only adjustable scale in the dimen-
sionless problem, and provides a relation between the tem-
perature, density, and size of the plasma. The computational
domain is specified initially in units of sD, and converted to
units of "D!'=0,(=0" once the solution for &̃ is known.
Physical quantities can then be obtained from the definition
of the Debye length by specifying two of the following in
physical units: density !at any point in the plasma", tempera-
ture, and plasma size.

By varying the size of the domain, we can create plas-
mas that are large/cold/dense or small/hot/rare. As the num-
ber of Debye lengths in the plasma goes to zero, Te becomes
much larger than *e&*, so the exponential term in the equi-
librium equation approaches unity. The equilibrium is then
given simply by Poisson’s equation where N!'" is the den-
sity. In this case, the pressure gradient dominates over the
electrostatic force and the plasma spreads itself evenly over
each field line !and therefore each magnetic surface". The
potential is simply a function of the boundary conditions and
the fixed density profile, and can vary significantly on a mag-
netic surface. As the number of Debye lengths in the plasma
goes to infinity, the electrostatic force dominates, so the po-
tential must be nearly constant on a magnetic surface to
maintain force balance, while the density can vary signifi-
cantly. These limits have been confirmed for two-
dimensional solutions of the equilibrium equation.8

III. COMPUTATIONAL METHOD

A. Iterative process

For a single-species plasma, a+"D implies *e& /Te*+1,
so the equilibrium equation cannot be linearized. Instead, a
pseudospectral Fourier method is used for the calculation of
three-dimensional !3D" equilibria !identical to that used pre-
viously for 2D calculations8". This is an iterative Fourier
method in which the nonlinear term is evaluated in real
space.

Denoting the right-hand side of Eq. !2" as f
=s!'"exp#&̃ /*!'"$, and assigning to Fourier components the
superscript k !wave number", the equilibrium equation is

0 = − fk − k2&̃k. !4"

We add a term that provides a smooth path from some
nonequilibrium &̃k to the equilibrium solution,

$&̃k

$t
= − fk − k2&̃k, !5"

then set $&̃k→&̃ j
k−&̃ j−1

k , $t→,t !the step size", and fk

→ f j−1
k , where j is the iteration number, to obtain an iterative

equation for &̃ j
k,

&̃ j
k =

&̃ j−1
k − ,tf j−1

k

1 + k2,t
. !6"

We start the process by specifying an initial guess for &̃0
!typically zero everywhere", from which f0 is obtained. The
Fourier transform is then taken !f0

k", and &̃1
k is obtained from

Eq. !6". This process is repeated until the equilibrium equa-
tion is satisfied to within an average error of 10−6, where the
error field is defined as the difference between the two sides
of Eq. !2" divided by the average of the left-hand side.

As an added complication, the relation between s!'" and
ñ is not known a priori since &̃ is not known. We therefore
choose to update s!'" during the iterative process in order to
have some control over the density profile. For this paper, we
enforce a parabolic density at (=- /2, )=0,

ñ!r,-/2,0"
ñ!' = 0,( = -/2"

= 1 −
r2

a2 , !7"

where r is the minor radial coordinate and a is the minor
radius !or more generally, the minor radial coordinate of the
plasma boundary at (=- /2, )=0". We evaluate the
s#'!r ,- /2 ,0"$ required to generate this density using Eq.
!2",

s#'!r,-/2,0"$ = %1 −
r2

a2&
.exp(− &̃!r,-/2,0"

*!'"
+ &̃!' = 0,( = -/2") .

!8"

Using a spline routine, s!'" is obtained for all other grid
points.

For all computational results presented, convergence was
obtained in roughly 104 iterations for plasmas with many
Debye lengths !a+10"d". Convergence is much more rapid
for plasmas with fewer Debye lengths !a+"d", +103 itera-
tions. This is roughly the same as for 2D equilibria and is
independent of grid size. A 643 grid was used for all equilib-
rium calculations except for those of the CNT, which re-
quired a 1283 grid due to the more complicated geometry.
This code was implemented entirely in Interactive Data Lan-
guage !IDL".
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B. Boundary conditions

An image charge distribution is used to maintain a con-
stant potential on the conducting boundary !Fig. 1". The re-
quired density profile of the image charge is calculated at
each iteration using a singular value decomposition !SVD"
method.

The image charge modes have the form

ñlm = Almg!r"exp!il)"exp!im(" , !9"

where g!r"=1+sin!/r+," inside the image charge region
and g!r"=0 outside. The constants / and , are chosen such
that g!r" goes through one full period in the image charge
region, with zeros at the edges. This provides a smooth dis-
tribution with a well-behaved Fourier transform.

The ( and ) Fourier modes of the potential on the con-
ducting boundary due to the image charge can be expressed
in matrix form as

&̃n = DnpAp, !10"

where n is an index that runs through all combinations of (
and ) Fourier modes !of the potential on the boundary", p is
the index of the image charge mode !l ,m" from Eq. !2", and
Ap is the magnitude of the pth image charge mode.

Before starting the iterative process, we determine the
coupling matrix Dnp. To obtain the pth column of Dnp, the
image charge associated with unity amplitude of the pth

charge mode is applied to the grid, and a Fourier method is
used to solve for the potential everywhere !&̃k= 0̄k /k2".
Since we are dividing by k2, the zeroth density mode must be
zero. A spherical shell of charge, which adds only a constant
term to the boundary, is used to balance the net image
charge. Once the potential is calculated everywhere, it is in-
terpolated onto the boundary, and the resulting Fourier com-
ponents form the pth column of Dnp.

Standard SVD inversion routines are then used to obtain
Dpn

+ , the pseudoinverse of Dnp. The magnitudes of the image
charge modes required to produce some given potential &̃n
on the boundary are

Ap = Dpn
+ &̃n. !11"

At each iteration the vector &̃n is calculated and the
charge required to produce it #from Eq. !11"$ is subtracted
from the grid, canceling the variation in potential on the
conducting boundary. The combination of image charge
modes that produces a constant potential on the boundary is
then added in the appropriate amount to maintain overall
charge neutrality.

IV. RESULTS

A. Toroidally symmetric surfaces

1. Conforming boundary

The simplest three-dimensional solutions to the equilib-
rium equation involve toroidally symmetric magnetic sur-
faces with circular cross section and conforming equipoten-
tial boundary. These equilibria demonstrate the major-radial
density shift, as well as the effect of varying the number of
Debye lengths in the plasma. The plasmas discussed in this
section, and throughout this paper, have aspect ratios of
R /a+2.

Contours of constants &, n, and ' for a plasma with
many Debye lengths !a+10"d" are shown in the top plot of
Fig. 2. If this were an a=0.1 m plasma with a peak density
of 1012 m−3, the temperature would be roughly 0.75 eV and
the potential on the magnetic axis would be −30 V with re-
spect to the conducting boundary. The minimum magnetic
field required to confine such a plasma !based on density
limits" is around 10−3 T.

The & and ' contours are nearly identical, while the
density contours are shifted outward, away from the center-
line. This outward shift of density is the opposite of what is
observed for pure toroidal field equilibria,9 where the plasma
contracts.10,11

In the case of a pure toroidal field, there is a bulk force
balance between the attraction of the plasma to the inner
conducting wall and the hoop force pushing the plasma out-
ward.

When rigid magnetic surfaces are present, the force bal-
ance occurs along a field line, where the hoop force causes
the density to build up on the outer part of the surface. The
hoop force in this case is driven by electrostatic repulsion,
and it is a combination of electrostatic self-repulsion and
pressure that provides the restoring force, pushing the plasma
back toward the inboard side of the surface.

The effect is qualitatively similar to the Shafranov shift
of a quasineutral plasma confined on magnetic surfaces, but
the underlying physics in the latter case is very different and
involves a shift of magnetic surfaces.

A plasma containing fewer Debye lengths !a+"d" is
shown in the bottom plot of Fig. 2. If this were an a
=0.1 m plasma with a peak density of 1012 m−3, the tempera-

FIG. 1. !Color online". Cutaway view of an image charge region, conduct-
ing boundary, and magnetic surfaces.
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ture would be roughly 150 eV and the potential on axis
−30 V with respect to the conducting boundary.

Due to its higher pressure, the plasma is able to spread
out uniformly over a magnetic surface, causing n and ' con-
tours to nearly coincide. Note that while this is not strictly
speaking a plasma !a+"d", the equilibrium equation still
applies.5

2. Parabolic temperature profile

To demonstrate the effect of nonuniform temperature, a
parabolic temperature distribution is applied such that *!'"
#Eq. !2"$ goes from 1 at the magnetic axis to 0.01 at the outer
magnetic surface. A plasma with a few Debye lengths is
chosen such that both potential and density vary on magnetic
surfaces.

The top plot of Fig. 3 shows contours for the constant
temperature case, while the lower plot represents a parabolic
temperature profile. The two plots are virtually identical near
the magnetic axis, where the temperatures are similar. It is
only near the edge of the plasma that the parabolic case

differs, in that the potential varies less on a magnetic surface
and the density varies more. This behavior is exactly what
one would expect based on the results of the preceding sec-
tion, since in the parabolic case the plasma is colder !has a
shorter Debye length" near the edge.

3. Vertically shifted surfaces

For the following equilibria, the magnetic surfaces are
shifted downward with respect to the conducting boundary.
This demonstrates the effect of a conducting boundary that
does not match the outer magnetic surface of a plasma.

A plasma with many Debye lengths !a+10"d" is shown
in Fig. 4 !top". The outer magnetic contour represents the
boundary of the plasma, while the outer potential contour is
the conducting boundary. The potential is nearly constant on
the magnetic surfaces in the interior of the plasma, but devi-
ates near the plasma edge.

The plasma itself is shifted towards the near wall of the
conductor, decreasing the energy associated with the interac-

FIG. 2. !Color". Toroidally symmetric surfaces. Many Debye lengths !top",
few Debye lengths !bottom". Contours of constant & !blue", n !red", and '
!black". The centerline is to the left at x /"D=0.

FIG. 3. !Color". Temperature profiles. Constant temperature !top", parabolic
temperature !bottom". Contours of constant & !blue", n !red", and ' !black"
for an a /"D+3 plasma.
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tion between the plasma and the image charge. This is what
one would expect from a stable equilibrium, but the opposite
of what occurs in a Penning trap, which has a maximum
energy equilibrium state. It has recently been shown that the
equilibrium is a minimum energy state with respect to slow
perturbations.12

A plasma with fewer Debye lengths !a+"d" is shown in
Fig. 4 !bottom". The pressure dominates in this case, spread-
ing the plasma evenly over each magnetic surface. There are
not enough Debye lengths in this plasma for effective Debye
screening. Again, since there is no conductor on the outer
magnetic surface of the plasma, the potential contours devi-
ate most near the edge of the plasma where the density is
lowest and the local Debye length is longest.

4. Conforming, biased boundary

By imposing some potential on the boundary that is a
function of the coordinate (, we can explore the effect of
biasing segmented conductors. In the following we present

equilibria for the case where the potential on the boundary is
given by &̃b=A cos!(", with a dimensionless amplitude A
=5. This is achieved using the SVD method in the same
manner as for an equipotential conducting boundary.

A density profile through the x-y plane is shown in Fig.
5 !top" for a plasma with !a+10"d". Lighter regions of the
plot represent higher densities. The central density is nearly
constant in (, while Debye shielding effects can be seen near
the edges. There is a buildup of charge near the plasma edge
on the high-potential !right" side of the torus !for an electron
plasma", and a depletion on the low-potential side !left".

A plasma containing fewer Debye lengths !a+"d" is
shown in Fig. 5 !bottom". Recall that the magnitude of the
potential on the boundary is &̃=e& /Te=5. We can think of
this plasma as being less dense or smaller than the previous
one, while having the same temperature so that the magni-
tude of the applied !dimensional" potential remains the same.
A hollow density profile results around (=0 due to the

FIG. 4. !Color". Shifted magnetic surfaces. Many Debye lengths !top", few
Debye lengths !bottom". Contours of constant & !blue", n !red", and '
!black" for a plasma with nonconforming equipotential boundary.

FIG. 5. !Color online". Biased boundary. Dense/large !top", rare/small !bot-
tom". Plasma density !lighter=denser" at a cut through the x-y plane, at z
=0, for a plasma with boundary biased as cos!(".
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strong attraction of the plasma to the biased conductor. In
this case, Debye shielding is ineffective due to the low den-
sity or small size of the plasma, and the low-potential side of
the torus is completely evacuated.

B. Toroidally asymmetric surfaces

1. Helically symmetric surfaces

The computational method developed to solve the equi-
librium equation is capable of handling a variety of magnetic
surface and boundary shapes. In this section we present re-
sults for a typical stellarator type configuration, with heli-
cally symmetric magnetic surfaces and conforming equipo-
tential boundary !as in Fig. 1". The magnetic surfaces and
equipotential boundary are created by sweeping an elliptical
cross section through (, rotating the section once in ) during
the revolution.

Contours are shown for toroidal cross sections at (=0
and (=- /2 in Fig. 6. This is a plasma with many Debye

lengths !a+10"d", so & contours are barely distinguishable
from ' contours. The same outward shift of density is ob-
served as in the toroidally symmetric case. There is also an
increase in the ellipticity of the density contours, regardless
of the orientation of the elliptical ' contours. This agrees
with the results seen previously in 2D calculations,8 and is
therefore an effect of ellipticity rather than toroidicity. On
each surface, the density is highest at the two far ends of the
ellipse. This reduces the interaction energy of the electrons
as compared to an even spread over the elliptical cross sec-
tion.

2. CNT equilibria

The Columbia Non-Neutral Torus has a twice-periodic,
fully three-dimensional magnetic surface configuration in
which the cross section varies significantly over a toroidal
quarter period !Fig. 7". It is the lowest aspect ratio stellarator
ever built !1/%+1.8", as recently confirmed by field-line
mapping experiments. Diagnostics and electron emitters are
currently being tested, and a conducting boundary is being
constructed, in preparation for first plasma.

Equilibria for a plasma with a /"D+1 are shown in Fig.
8 for two toroidal locations, the most elongated cross section
at (=0 and the roundest cross section at (=- /2. As with
previous equilibria, the density is roughly constant on each
magnetic surface and the potential varies significantly when
there are few Debye lengths in the plasma. Note that the
potential contours that appear outside of the equipotential
boundary are merely artifacts of the complicated image
charge distribution required for this configuration.

A plasma with a /"D+10 is shown in Fig. 9. Both cross
sections demonstrate the near constancy of the potential on a
magnetic surface that was observed with simpler configura-
tions, as well as the increase in ellipticity and outward shift
of the density contours.

The (=- /2 contour exhibits a peaking of the density
above and below the magnetic axis, a saddle-type distribu-
tion that was not present in the previously presented equilib-
ria. This broad qualitative effect should be easy to diagnose
in the CNT, if present. Note that this is the cross section at

FIG. 6. !Color". Helically symmetric surfaces. (=0 !top", (=- /2 !bottom".
Contours of constant & !blue", n !red", and ' !black" for an a /"D+10
plasma.

FIG. 7. !Color online". Cutaway view of the CNT magnetic surface
configuration.
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which the line of parabolic density is imposed, at z=0, from
the magnetic axis to the outboard side of the outer magnetic
surface.

V. DISCUSSION

Using a simple numerical technique, equilibrium profiles
of single species plasmas confined on magnetic surfaces have
been determined for a wide range of boundary conditions
and magnetic surface configurations. The equilibrium equa-
tion represents a parallel balance between the electrostatic
force and the pressure gradient combined with Poisson’s
equation for the electrostatic potential. The only parameter
that distinguishes one equilibrium from another is the
number of Debye lengths in the plasma: we can think of
a+"D plasmas as large/cold/dense and a$"D “plasmas” as
small/hot/rare.

Like the Shafranov shift of quasineutral plasmas, single-
species plasmas confined on magnetic surfaces are shifted
outward. However, the magnetic surfaces in the single-

species case are rigid and the outward shift of the plasma is
a result of the electrostatic hoop force pushing the plasma to
the outboard side of the magnetic surfaces. This is the oppo-
site of what occurs in non-neutral plasmas confined by pure
toroidal fields which shift inward, such that the resulting at-
traction of the plasma to the inboard side of the conducting
boundary balances the hoop force.9–11

When the conducting boundary is shifted vertically with
respect to the magnetic surfaces, the plasma density builds
up near the conductor. This is equivalent to a negatively
charged plasma being attracted to a positive charge. It is
consistent with a minimum energy state,12 which we expect
from a stable system, but the opposite of what occurs in pure
toroidal field confinement of single-species plasmas.

Single-species plasmas exhibit Debye screening in a
manner similar to quasineutral plasmas. For instance, where
there would be a buildup of positive charge density around a
negative test charge in a quasineutral plasma, there is a
depletion of density in a pure electron plasma. This is dem-

FIG. 8. !Color". CNT Equilibria, a /"D+1. (=0 !top", (=- /2 !bottom".
Contours of constant & !blue", n !red", and ' !black".

FIG. 9. !Color". CNT equilibria, a /"D+10. (=0 !top", (=- /2 !bottom".
Contours of constant & !blue", n !red", and ' !black".
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onstrated by the equilibrium profiles of plasmas with nonuni-
formly biased boundaries, and plasmas with nonconforming
equipotential boundaries. Because of this depletion effect,
entire regions can become fully evacuated, rendering the
shielding mechanism ineffective.

The & contours closely follow the ' contours for plas-
mas containing a significant number of Debye lengths !a
#10"D". This means that the E.B drift is within a surface,
so cross-surface transport is lower and confinement better for
denser plasmas, providing n$nB=%0B2 /2me and n
$%0Bc /ae are satisfied. The worst confinement tends to oc-
cur near the edge of the plasma, where the density is lowest,
the local Debye length is longest, and the alignment of & and
' contours is poorest. This suggests that the density profile
will become narrower and steeper through shedding of the
outer layers, although the dynamics of this have not been
studied. A conducting boundary that matches a magnetic sur-
face on the edge of the plasma helps confinement by forcing
the potential and magnetic contours to coincide in this re-
gion. The implementation of such a conducting boundary is
simple for low-density non-neutral plasmas confined in a
stellarator configuration, since plasma currents do not
modify the magnetic surfaces.

The computed CNT equilibria exhibit the same near-

constancy of electric potential on a magnetic surface that is
exhibited by simpler geometries with the same number of
Debye lengths, a+10"D. This is promising in terms of ex-
pected confinement time, provided a sufficiently cold and
dense plasma can be initiated.
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