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Stability of pure electron plasmas on magnetic surfaces
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The electrostatic analog of magnetohydrodynamic stability for a pure electron plasma on magnetic
surfaces is examined. Perturbations that conserve the number of particles and the entropy of the
plasma as well as maintain force balance and a temperature that is a spatial constant along the
magnetic field lines are considered. It is shown that such perturbations require positive external
energy and are, therefore, stable2@4 American Institute of Physid®OIl: 10.1063/1.1789140

I. INTRODUCTION II. PERTURBATION ENERGY

The change in the energy that occurs when a pure elec-

Toroidal plasmas with magnetic surfaces have been useggn plasma is perturbed can be subtle to derive. A simple
for about half a century to confine quasineutral plasmas. Progerivation, which is of interest in its own right, is based on
posals to confine non-neutral plasmas in either axisymmetrighe energy that is required to externally perturb the electric
levitated ring or in stellaratof toroidal systems with mag- potential. The perturbations are produced by changing the
netic surfaces are far more recent. The theory of pure elecharge distribution on a thin insulated toroidal shell, or grid,
tron plasmas confined on magnetic surfaces differs signifithat lies on any surface, inside or outside of the plasma, on
cantly from that of quasineutral plasmas. For example, thevhich the unperturbed electric potential is a constary,
equilibrium of quasineutral plasmas is primarily determinedThe external power that must be supplied to the shell to
by solving force balanceﬁp:fx B with V x ézﬂof. The create a perturbation is the integral over the surface of the
electric field is determined by making the transport ambipo-shell of the electric potentiab times the time derivative of

lar, and the charge imbalance is given Bye,V -E. In pure  the surface charge

electron plasmas, the plasma density is sufficiently low so Jo

that its current has a negligible effect on the magnetic field. x = ﬂg b—da. (1)
Force balance and rapid heat transport along the magnetic

field lines determinethe form of the electron density, Eq. The derivation of Eq(1) begins with the general expres-
(8). The primary equilibrium equation is the equation for thesion for the power put into electromagnetic fields,
electric potentiaV2d=-p/ ¢, with E=-V®. =—[4 -Ed®x, which is a volume integral over the shell. One

As with research on any plasma confinement conceptthen usesf-E:—V-((Df)+<DV-f, the continuity equation,
the primary theoretical issues for pure electron confinemenﬁ.fz_gp/at, andf-ﬁzo on the surface of the insulated shell.
on magnetic surfaces are equilibrium, stability, and transportrinally, Poisson's equationy?®=-p/¢,, implies that no
Fundamental equilibrium theory is developed in Refs. 2 andump in the potential can occur across the thin shiah]

3. A heuristic discussion of transport is given in Ref. 2. Here—g gng tha[ﬁ-ﬁ@]:—a/eo with o the surface charge den-
the theory of plasma stability is developed for perturbationssity on the shell; within the shepd®x=oda.

that are of sufficiently low frequency to preserve force bal- ~ The electric potential on the shell can be writtendas
ance and the equality of the electron temperature along th_eq)s+5¢ with @, the constant potential of the equilibrium
magnetic field lines. These two constraints are shown t0 iMgiate. The  external power is P,=ddQ./dt

ply that an otherwise ideal plasma is stable to all perturba:rgg(;q)(&(go/&t)da with Q, the total charge on the shell. The
tions of the electric potentiab(X). The source of this robust term d.dQ/dt is not relevant to stability and can be elimi-
stability is that these two constraints eliminate plasma flows,ated by assuming either that the shell is groundeg:0, or
that cross the magnetic surfaces. Since the magnetic surfacgg; the total charge on the shell is not changig,/dt=0.

are rigid, the elimination of plasma flows across the surfaces | et f,(9,¢) be a set of dimensionless functions on the
means the plasma cannot effectively tap the enormous frégroidal surface formed by the shell withand ¢ a poloidal
energy that exists in the repulsive electrostatic potential. ~ and a toroidal angle on that surface. These functions are

The stability of a plasma confined in a torus was studiethssymed to be orthonormaff;f:wda with w(6,¢)>0 an

by O'Neil and Smitft with the assumptions of perfect toroi- arbitrary weight function. Changes in the electric potential
dal symmetry and a purely toroidal magnetic field, whichgn the shell can be written as

means without magnetic surfaces. The energy variation that .

they used to examine stability can be placed in the same 5‘1):2 Vi) (6,¢). (2)
form as the energy variation that is derived here. However, '

the nature of the solutions is different because a plasma corgimilarly, the changes in the charge density on the shell can
fined on magnetic surfaces obeys different constraints. be written as
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so=w2 RQVF(6,9), (3

where 6Q; have units of charge. The required exernal power

is thenP,=3% 6V;d&Q;/dt.
If the change in the plasma equilibrium is sufficiently

small and slow, the change in the equilibrium associated witfiMit

a potential change is linear and of the form

5Qi:2CijéVja (4)
i
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trons per unit volume so the charge densitpis-en, andv

is the electron fluid velocity.

The actual equilibrium equation has a tem;nz?-VZF, in
addition to those given in Ed7). This term sets an upper
limit on the density in pure electron plasmas, the Brillouin
56 ng=¢,B?/2m,. The cause of the Brillouin limit is

easily understood. The teremy X B must balance the Cou-
lomb repulsion of the electrons. As the electron density be-
comes largeftv| must become larger. Eventually the repul-

sion of the centrifugal force associated with the term

whereC;; is a matrix that gives the effective capacitance ofmgg-Vo becomes comparable with the electrostatic repul-

the shell. The capacitance mat@can be determined em-
pirically by measuring the change in the charge on the vari

sion. A higher density makes the repulsive terms dominate
and prevents an equilibrium. As the Brillouin limit is ap-

ous pieces of a segmented shell as the potentials are varigatoached,n— ng with n<ng, stability is presumably lost

The required external power B = SV -C-dév/dt.

In principle the capacitance matrix need not be Hermit-

ian, but we will show for the plasma model that we are
considering that it i€£=C". When the capacitance is Hermit-
ian, P,=déW/dt with
M:%é\?ﬁé’-a\?:%fﬁ&baoda. (5)
The surface charge on the shell m:—eo[ﬁ-ﬁﬁ],
which means one can convert the area integral over the sh
of Eq. (5) into a volume integral over all of space except the
volume occupied by the shell. That is,
W= 3 f [V 8D)% - 5p5d]dx, (6)
where p=-¢,V?5® is the perturbed charge density. Equa-
tion (6) is the equation for the change in energy associate
with a perturbation. If6W>0, the system is stable to the
perturbation. The expression of O’'Neil and Srilifor 6w,

their Eq.(11), can be placed in the form of E¢6) with the
use of their Eq(12).

Ill. PLASMA CONSTRAINTS

The only difficulty in applying Eq(6) is in determining
how the charge densit§p varies as the electric potentiab
is varied. The interpretation is thatis a functional of the

potential®. In other words the change in the charge density>< B/B2

Sp(X,t) is assumed to be calculable if the change in the po
tential 5P (X, 1) is known, but the relation betweeip and 50
is more complicated than that of a function.

The calculation ofSp given §& can be carried out using

four constraints. Two of these constraints are the constraintﬁeI

of an ideal plasma: the number of electrofrs®x and the
entropy[scPx are conserved. The entropy per unit volume is
s=n1In(c,T¥2/n) with ¢ a constant. The third constraint is
that the magnetic field provides force balance,

Vp+enE+7 X B)=0, 7)

and the fourth constraint ié-ﬁT:O, which comes from the

even before equilibrium. However, the approach to the Bril-
louin limit is beyond the scope of this paper. Indeed, for the
magnetic surfaces to play a role in the physics one must
satisfy an even stricter limit on the density tharng. The
existence of magnetic surfaces is only relevant if the elec-
trons can move faster by going along the magnetic field than
across at the velocitﬁx B/B2. This constraint requires that
n/ng<(:\yg/R)2. The typical distance along a magnetic field
line between points within a magnetic surfaceRé:, and

eﬁz €,T/n€ defines the Deybe lengtky. The distanceR is
t

e major radius of the torus ands the rotational transform.
A magnetic field line advances on average:2adians po-
loidally each time it makes a toroidal circuit of the torus. A
plasma is normally defined by the short Debye length limit,
\g<<a, wherea is the minor radius of the torus, so in the
plasma limit the density must be very small compared to the

rillouin limit for the magnetic surfaces to be important.

hen the limitsn/ng<(:\4/R)?><1 are satisfied, the term
MG - Vo is not only much smaller thaenE but also much
smaller thanﬁp.

The analysis of this paper is carried out under the as-
sumption of an isotropic plasma pressure. This approxima-
tion, although conventional, is not strictly correct for the
instability of traditional interest for pure electron plasmas,
the diocotron mode. This instability grows at a raje
~(E/B)/a, wherea is the minor radius of the torus. The
time scale for electrons to precess poloidally due to tReir
velocity is 2/ y. For the pure electron plasmas of
interest, the collision frequency is much smaller thgn
which means a perturbation can produce a small pressure
anisotropy.

The imposition of the constraints due to the magnetic
d is simplified by the use ofi, 6, ) magnetic coordi-
nates in which the magnetic field has simple forms. The
magnetic field is curl free, so it can be written &
:M0G0§¢/2w with ¢ a dimensionless scalar potential for the
magnetic field,V2¢=0. The quantitye can be used as the
toroidal angleG is a constant, the current that produces the

magnetic field uGo= gﬁé-d€. One can also write a magnetic

rapid electron heat transport along the magnetic field linesfield that forms surfaces aB=VyxVo/2m+uyh)Ve

The notation used in the force balance equation is phist
the electron pressure with=nT, n is the number of elec-
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is the rotational transform. The existence of magnetic sur- T3/2 36T

faces means each field line trajectory in a constastiface 5<” In( )> =57 M= {nn)én). (14

comes arbitrarily close to each point on that surface. This is

true “almost everywhere” in the language of mathematics ifEquation (8) plus ((In N)on)=(InN){(én)=0  imply

(1) is a nonconstant function af. {((In'n)dny=((ed/T) ). Equationg(12) and(13) then imply
In the presence of magnetic surfaces, the condition

B-VT=0 implies T(y). The temperature is a constant on a <n><n@5@> B <n@><n5g>
magnetic surface and the pressur@#nT(y). SinceB-Vy 30T T T T T

=0, electron force balance along the magnetic field(Bg. 2T (n)? (19
implies that when field lines cover constapsurfaces Let
ed ed ed
n(ip, @) = N( )exp( ) (8) = = =
b, 1 W A=(n){ n = 5P n— (n&d), (16)
The electron flow velocity is also given by E() and is then
. ST eA/T
- Uz B > T- 1- _ = > > (17)
=—B+ 5 X|VO-=VInn--VT]. (9) T 4 ed ed
B B e e SMZ+(m{ n —) ) \r7

The electron flow across the magnetic surfaces is zero, . . .
The Hermiticity of the the capacitance matrix can be

R J T shown to follow if [ 8p,6P,d%x= [ 8p,6P,d%x for any two
v-Vip=- 277(9—9(43 -=In n) =0, (10 perturbations, which is true ifén;5d,)=(n,5P,) with 5p
€ =-edn. Now
sincen is given by(8). T B (N6 KNP,y Ty
The number densitp and the entropy densityare car- g<5@léh2> =(n&0,60,) - (n - 6 (18)

ried by the flow in an ideal fluid. Consequently, the absence _
of a flow across the field lines in both the unperturbed andvhere the effect of the temperature change is

perturbed plasma states implies that the number of particles AjA,

and the entropy must be conserved flux surface by flux 7;,= 5 5 (19
surface. These constraints areS/nJdéde=0 and 3, ed ed
5/nIn(T¥2/n) Jd6 de=0 with the Jacobian ofy, 6, ¢) co- AUARAANL ey By T

ordinatesJ=uGo/ (27B)?. Using the surface average of a
function (%), with Ay =(n}n(ed®/T)P,)—(n(e®/T)nsPy) and A, de-
fined analogously. Clearly,on,s®,)=(dn,6P,), which en-

sures the Hemiiticity of the capacitance matrix.
fJdode

H=—""" (12)
fﬁ Jdo de IV. PERTURBED ENERGY ON A SURFACE

The absence of a plasma flow across the rigid magnetic

surfacesp -Vﬂsz, makes it useful to examine the effect of
the perturbation on the energy, magnetic surface by magnetic

the two constraints ar&n)=0 and&n In(T%2/n))=0. These
two constraints determine hoiW() and T(i)) change asb

changes. o o ~_ surface. The variation in the energf), can be written as
Equation(8) implies that the variation in the density is SW=[ Sw(y)(dV/ dy)dips, where
given by - R o
W= 3(eo(V D)) + Wy(1h), (20)
N ={N/N+ 5(ed/T)}n, (12

W, (i) =(e/2)(snéP) and the volume enclosed by a flux

so the constrain®n)=0 is surface isV(y)=[Jdi¢ d6 de. Using (18) the plasma contri-
bution can be written as

ed

N <“5?> =~ & (6D - (o)) - T, (21)

NN T/ 19 AT
N w where the contribution to&ﬁ due to the variation in the
The perturbation to the temperature is given by the contemperature is given b= Tl > with 60,=5D,=56P. The

straint on the entropyXn In(T*?/n))=0. This constraint can term Z"is always positive and therefore destabilizing.

be rewritten using(ony=0 and {(In T¥?) én)=(In T*?){on) The ratio of the plasma energy to the electric field energy

=0 as is
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20W,

eo(% 5D)?2 - (k)\d)2 ,

1 — T
(22) b\Np = 2<n—¢2>

Let ¢=c,f(#,6,¢) with f normalized sanf?)=(n), and let
where the square of the Debye lengti\js= ¢,T/ne? and the  5¢p= acyf+aocya(, 0, ¢) with g normalized sdng?)=(ny and
characteristic wave numbdxrsatisfiesk|5d>|z|§5<I>|. Since made unique by the choig@fg)=0. Then,dw,=((n)T/2)
the electric field energy is positive, instability is possible X(6cg)2. If 6cy=0, then pr:(<n>T/2)5cfb/(l+2c§5/3), SO
only if the Debye length is small compared to the size of thedw,, is positive for all perturbations of the potential.
plasma. When the Debye length is small, the perturbed Pure electron plasmas confined on magnetic surfaces are
plasma energy is dominant, so any perturbations that woultbbustly stable to low frequency perturbations, which are the
make dw,(¢) negative would also makéW negative. We electrostatic analogs of the well-known magnetohydrody-
will find that no such perturbations exist. Consequently, purenamic instabilities of quasineutral plasmas confined by a
electron plasmas are stable to perturbations that obey thmagnetic field.
constraints of our analysis.
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