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Stability of pure electron plasmas on magnetic surfaces
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The electrostatic analog of magnetohydrodynamic stability for a pure electron plasma on magnetic
surfaces is examined. Perturbations that conserve the number of particles and the entropy of the
plasma as well as maintain force balance and a temperature that is a spatial constant along the
magnetic field lines are considered. It is shown that such perturbations require positive external
energy and are, therefore, stable. ©2004 American Institute of Physics. [DOI: 10.1063/1.1789160]
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I. INTRODUCTION

Toroidal plasmas with magnetic surfaces have been
for about half a century to confine quasineutral plasmas.
posals to confine non-neutral plasmas in either axisymm
levitated ring1 or in stellarator2 toroidal systems with mag
netic surfaces are far more recent. The theory of pure
tron plasmas confined on magnetic surfaces differs sig
cantly from that of quasineutral plasmas. For example
equilibrium of quasineutral plasmas is primarily determi

by solving force balance,¹W p= jW3BW with ¹W 3BW =m0jW. The
electric field is determined by making the transport amb

lar, and the charge imbalance is given byr=e0¹W ·EW . In pure
electron plasmas, the plasma density is sufficiently low
that its current has a negligible effect on the magnetic fi
Force balance and rapid heat transport along the mag
field lines determine2 the form of the electron density, E
(8). The primary equilibrium equation is the equation for

electric potential¹2F=−r /e0 with EW =−¹W F.
As with research on any plasma confinement conc

the primary theoretical issues for pure electron confinem
on magnetic surfaces are equilibrium, stability, and trans
Fundamental equilibrium theory is developed in Refs. 2
3. A heuristic discussion of transport is given in Ref. 2. H
the theory of plasma stability is developed for perturbat
that are of sufficiently low frequency to preserve force
ance and the equality of the electron temperature alon
magnetic field lines. These two constraints are shown to
ply that an otherwise ideal plasma is stable to all pertu
tions of the electric potentialFsxWd. The source of this robu
stability is that these two constraints eliminate plasma fl
that cross the magnetic surfaces. Since the magnetic su
are rigid, the elimination of plasma flows across the surf
means the plasma cannot effectively tap the enormous
energy that exists in the repulsive electrostatic potentia

The stability of a plasma confined in a torus was stu
by O’Neil and Smith4 with the assumptions of perfect tor
dal symmetry and a purely toroidal magnetic field, wh
means without magnetic surfaces. The energy variation
they used to examine stability can be placed in the s
form as the energy variation that is derived here. Howe
the nature of the solutions is different because a plasma

fined on magnetic surfaces obeys different constraints.
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II. PERTURBATION ENERGY

The change in the energy that occurs when a pure
tron plasma is perturbed can be subtle to derive. A sim
derivation, which is of interest in its own right, is based
the energy that is required to externally perturb the ele
potential. The perturbations are produced by changing
charge distribution on a thin insulated toroidal shell, or g
that lies on any surface, inside or outside of the plasma
which the unperturbed electric potential is a constant,Fs.
The external power that must be supplied to the she
create a perturbation is the integral over the surface o
shell of the electric potentialF times the time derivative o
the surface charges

Px = R F
] s

] t
da. s1d

The derivation of Eq.(1) begins with the general expre
sion for the power put into electromagnetic fields,Px

=−esjW·EWd3x, which is a volume integral over the shell. O

then usesjW·EW =−¹W ·sF jWd+F¹W · jW, the continuity equation

¹W · jW=−]r /]t, andjW·n̂=0 on the surface of the insulated sh
Finally, Poisson’s equation,¹2F=−r /e0, implies that no
jump in the potential can occur across the thin shell,fFg
=0 and thatfn̂·¹W Fg=−s /e0 with s the surface charge de
sity on the shell; within the shellrd3x=sda.

The electric potential on the shell can be written aF
=Fs+dF with Fs the constant potential of the equilibriu
state. The external power is Px=FsdQs/dt
+ rdFs]ds /]tdda with Qs the total charge on the shell. T
term FsdQs/dt is not relevant to stability and can be elim
nated by assuming either that the shell is grounded,Fs=0, or
that the total charge on the shell is not changed,dQs/dt=0.

Let f isu ,wd be a set of dimensionless functions on
toroidal surface formed by the shell withu andw a poloida
and a toroidal angle on that surface. These functions
assumed to be orthonormal,rf i f j

pwda with wsu ,wd.0 an
arbitrary weight function. Changes in the electric poten
on the shell can be written as

dF = o
i

dVistdf i
psu,wd. s2d

Similarly, the changes in the charge density on the shel

be written as

© 2004 American Institute of Physics
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ds = wo
i

dQistdf i
psu,wd, s3d

wheredQi have units of charge. The required exernal po
is thenPx=S dVi

pddQi /dt.
If the change in the plasma equilibrium is sufficien

small and slow, the change in the equilibrium associated
a potential change is linear and of the form

dQi = o
j

CijdVj , s4d

whereCij is a matrix that gives the effective capacitance

the shell. The capacitance matrixCJ can be determined em
pirically by measuring the change in the charge on the
ous pieces of a segmented shell as the potentials are v

The required external power isPx=dVW †·CJ ·ddVW /dt.
In principle the capacitance matrix need not be Her

ian, but we will show for the plasma model that we

considering that it isCJ=CJ†. When the capacitance is Herm
ian, Px=ddW/dt with

dW= 1
2dVW † ·CJ · dVW = 1

2 R dFdsda. s5d

The surface charge on the shell isds=−e0fn̂·¹W dFg,
which means one can convert the area integral over the
of Eq. (5) into a volume integral over all of space except
volume occupied by the shell. That is,

dW= 1
2 E fe0s¹W dFd2 − drdFgd3x, s6d

wheredr=−e0¹
2dF is the perturbed charge density. Eq

tion (6) is the equation for the change in energy assoc
with a perturbation. IfdW.0, the system is stable to t
perturbation. The expression of O’Neil and Smith4 for dW,
their Eq.(11), can be placed in the form of Eq.(6) with the
use of their Eq.(12).

III. PLASMA CONSTRAINTS

The only difficulty in applying Eq.(6) is in determining
how the charge densitydr varies as the electric potentialdF
is varied. The interpretation is thatr is a functional of the
potentialF. In other words the change in the charge den
drsxW ,td is assumed to be calculable if the change in the
tentialdFsxW ,td is known, but the relation betweendr anddF
is more complicated than that of a function.

The calculation ofdr givendF can be carried out usin
four constraints. Two of these constraints are the constr
of an ideal plasma: the number of electronsend3x and the
entropyesd3x are conserved. The entropy per unit volum
s=n lnscsT

3/2/nd with cs a constant. The third constraint
that the magnetic field provides force balance,

¹W p + ensEW + vW 3 BW d = 0, s7d

and the fourth constraint isBW ·¹W T=0, which comes from th
rapid electron heat transport along the magnetic field l
The notation used in the force balance equation is thatp is

the electron pressure withp=nT, n is the number of elec-
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trons per unit volume so the charge density isr=−en, andvW
is the electron fluid velocity.

The actual equilibrium equation has a term,menvW ·¹W vW, in
addition to those given in Eq.(7). This term sets an upp
limit on the density in pure electron plasmas, the Brillo
limit,5,6 nB;e0B

2/2me. The cause of the Brillouin limit i

easily understood. The termenvW 3BW must balance the Co
lomb repulsion of the electrons. As the electron density
comes largeruvW u must become larger. Eventually the rep
sion of the centrifugal force associated with the t

menvW ·¹W vW becomes comparable with the electrostatic re
sion. A higher density makes the repulsive terms dom
and prevents an equilibrium. As the Brillouin limit is a
proached,n→nB with n,nB, stability is presumably lo
even before equilibrium. However, the approach to the
louin limit is beyond the scope of this paper. Indeed, for
magnetic surfaces to play a role in the physics one
satisfy an even stricter limit on the density thann!nB. The
existence of magnetic surfaces is only relevant if the e
trons can move faster by going along the magnetic field

across at the velocityEW 3BW /B2. This constraint requires th
n/nB! sild/Rd2. The typical distance along a magnetic fi
line between points within a magnetic surface isR/ i, and
ld

2;e0T/ne2 defines the Deybe lengthld. The distanceR is
the major radius of the torus andi is the rotational transform
A magnetic field line advances on average 2pi radians po
loidally each time it makes a toroidal circuit of the torus
plasma is normally defined by the short Debye length li
ld!a, wherea is the minor radius of the torus, so in t
plasma limit the density must be very small compared to
Brillouin limit for the magnetic surfaces to be importa
When the limitsn/nB! sild/Rd2!1 are satisfied, the ter

menvW ·¹W vW is not only much smaller thanenEW but also much

smaller than¹W p.
The analysis of this paper is carried out under the

sumption of an isotropic plasma pressure. This approx
tion, although conventional, is not strictly correct for
instability of traditional interest for pure electron plasm
the diocotron mode. This instability grows at a rateg
,sE/Bd /a, wherea is the minor radius of the torus. T

time scale for electrons to precess poloidally due to theEW

3BW /B2 velocity is 2p /g. For the pure electron plasmas
interest, the collision frequency is much smaller thang,
which means a perturbation can produce a small pre
anisotropy.

The imposition of the constraints due to the magn
field is simplified by the use ofsc ,u ,wd magnetic coord
nates in which the magnetic field has simple forms.

magnetic field is curl free, so it can be written asBW

=m0G0¹W w /2p with w a dimensionless scalar potential for
magnetic field,¹2w=0. The quantityw can be used as t
toroidal angle.G0 is a constant, the current that produces

magnetic field,m0G0= rBW ·d,. One can also write a magne

field that forms surfaces asBW =¹W c3¹W u /2p+iscd¹W w

3¹W c /2p, whereu is a magnetic poloidal angle. The toroi

magnetic flux enclosed by a magnetic surface isc, andiscd
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is the rotational transform. The existence of magnetic
faces means each field line trajectory in a constant-c surface
comes arbitrarily close to each point on that surface. Th
true “almost everywhere” in the language of mathemati
iscd is a nonconstant function ofc.

In the presence of magnetic surfaces, the cond

BW ·¹W T=0 implies Tscd. The temperature is a constant o

magnetic surface and the pressure isp=nTscd. SinceBW ·¹W c
=0, electron force balance along the magnetic field, Eq(7),
implies that when field lines cover constant-c surfaces

nsc,Fd = NscdexpS eF

Tscd
D . s8d

The electron flow velocity is also given by Eq.(7) and is

vW =
vi

B
BW +

BW

B2 3 S¹W F −
T

e
¹W ln n −

1

e
¹W TD . s9d

The electron flow across the magnetic surfaces is zero,

vW ·¹W c = − 2p
]

] u
SF −

T

e
ln nD = 0, s10d

sincen is given by(8).
The number densityn and the entropy densitys are car

ried by the flow in an ideal fluid. Consequently, the abse
of a flow across the field lines in both the unperturbed
perturbed plasma states implies that the number of par
and the entropy must be conserved flux surface by
surface. These constraints aredenJdu dw=0 and
den lnsT3/2/ndJdu dw=0 with the Jacobian ofsc ,u ,wd co-
ordinatesJ=m0G0/ s2pBd2. Using the surface average o
function fsxWd,

kfl ;
R fJdu dw

R Jdu dw

, s11d

the two constraints aredknl=0 anddkn lnsT3/2/ndl=0. These
two constraints determine howNscd andTscd change asF
changes.

Equation(8) implies that the variation in the density
given by

dn = hdN/N + dseF/Tdjn, s12d

so the constraintdknl=0 is

dN

N
= −

Knd
eF

T
L

knl
. s13d

The perturbation to the temperature is given by the
straint on the entropydkn lnsT3/2/ndl=0. This constraint ca
be rewritten usingkdnl=0 and ksln T3/2ddnl=sln T3/2dkdnl

=0 as
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dKn lnST3/2

n
DL =

3

2

dT

T
knl − ksln nddnl. s14d

Equation (8) plus ksln Nddnl=sln Ndkdnl=0 imply
ksln nddnl=kseF /Tddnl. Equations(12) and (13) then imply

3

2

dT

T
=

knlKn
eF

T
d

eF

T
L −Kn

eF

T
LKnd

eF

T
L

knl2 . s15d

Let

D ; knlKn
eF

T
dFL −Kn

eF

T
LkndFl, s16d

then

dT

T
=

eD/T

3

2
knl2 + knlKnSeF

T
D2L −Kn

eF

T
L2

. s17d

The Hermiticity of the the capacitance matrix can
shown to follow if edr1dF2d

3x=edr2dF1d
3x for any two

perturbations, which is true ifkdn1dF2l=kdn2dF1l with dr
=−edn. Now

T

e
kdF1dn2l = kndF1dF2l −

kndF1lkndF2l
knl

−
T1,2

knl
, s18d

where the effect of the temperature change is

T1,2 ;
D1D2

3

2
knl2 + knlKnSeF

T
D2L −Kn

eF

T
L2

s19d

with D1;knlknseF /TddF1l−knseF /TdlkndF1l and D2 de-
fined analogously. Clearly,kdn1dF2l=kdn2dF1l, which en-
sures the Hemiticity of the capacitance matrix.

IV. PERTURBED ENERGY ON A SURFACE

The absence of a plasma flow across the rigid mag

surfaces,vW ·¹W c=0, makes it useful to examine the effect
the perturbation on the energy, magnetic surface by mag
surface. The variation in the energy,(6), can be written a
dW=edw̄scdsdV /dcddc, where

dw̄ ; 1
2ke0s¹W dFd2l + dw̄pscd, s20d

dw̄pscd;se/2dkdndFl and the volume enclosed by a fl
surface isVscd=eJdc du dw. Using (18) the plasma contr
bution can be written as

dw̄p =
e2

2knlT
hsknlknsdFd2l − kndFl2d −T j, s21d

where the contribution todw̄p due to the variation in th
temperature is given byT=T1,2 with dF1=dF2=dF. The
termT is always positive and therefore destabilizing.

The ratio of the plasma energy to the electric field en

is
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2dw̄p

e0s¹W dFd2
<

1

skldd2 , s22d

where the square of the Debye length isld
2;e0T/ne2 and the

characteristic wave numberk satisfieskudFu<u¹W dFu. Since
the electric field energy is positive, instability is poss
only if the Debye length is small compared to the size of
plasma. When the Debye length is small, the pertu
plasma energy is dominant, so any perturbations that w
make dw̄pscd negative would also makedW negative. We
will find that no such perturbations exist. Consequently,
electron plasmas are stable to perturbations that obe
constraints of our analysis.

The unperturbed electric potential within the plasma

be written asFsc ,u ,wd=F̄scd+fT/e, wheref is dimen-
sionless and of order unity withknfl=0. Similarly the per

turbed potential can be written asdF=dF̄sc ,td
+sT/eddf with kndfl=0. One then finds that

dw̄p =
knlT

2 S knsdfd2l
knl

−
knfdfl2

3
2knl2 + knlknf2lD . s23d

This expression is always greater than or equal to zero
see this note the 3/2 indw̄ scd increases its magnitude, s
p
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dw̄p ù
T

2knf2l
sknf2lknsdfd2l − knfdfl2d. s24d

Let f=cffsc ,u ,wd with f normalized soknf2l=knl, and le
df=dcff +dcggsc ,u ,wd with g normalized sokng2l=knl and
made unique by the choiceknfgl=0. Then,dw̄pù sknlT/2d
3sdcgd2. If dcg=0, then dw̄p=sknlT/2ddcf

2 / s1+2cf
2 /3d, so

dw̄p is positive for all perturbations of the potential.
Pure electron plasmas confined on magnetic surface

robustly stable to low frequency perturbations, which are
electrostatic analogs of the well-known magnetohydr
namic instabilities of quasineutral plasmas confined b
magnetic field.
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