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Numerical investigation of two-dimensional pure electron plasma
equilibria on magnetic surfaces

Thomas Sunn Pedersen
Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027
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Two-dimensional solutions to the equilibrium equation for finite temperature, low density pure
electron plasmas confined on magnetic surfaces@T. S. Pedersen and A. H. Boozer, Phys. Rev. Lett.
88, 205002~2002!# are presented for the first time. These equilibria are not maximum energy states,
in contrast to Penning trap equilibria@J. Notteet al., Phys. Rev. Lett.69, 3056~1992!#. By varying
the number of Debye lengths in the plasma,a/lD , from 0.1 to 10, we explore both relatively warm
and relatively cold plasma equilibria. The effects of different boundary conditions and the
implications for collisional transport rates are discussed. ©2003 American Institute of Physics.
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I. INTRODUCTION

This paper presents the first numerical study of equilib
of finite temperature pure electron plasmas confined on
oidal magnetic surfaces. Magnetic surface configuratio
such as stellarators and tokamaks, are highly developed
studied in the context of thermonuclear fusion, and have
cently become of interest for the confinement of non-neu
plasmas.1,2 They have certain advantages over open a
closed field line systems, such as the Penning trap,3 which is
the most successful configuration for confinement of sin
species plasmas. Magnetic surface configurations con
both positive and negative species simultaneously, at
level of charge imbalance from pure electron to quasineu
They may provide stabilization of diocotron modes, and c
fine energetic electrons and positrons at modest magn
field strengths. Thus, such configurations have unique ad
tages for laboratory confinement of positron–electron~pair!
plasmas, non-neutral electron–ion plasmas, and antipro
positron plasmas. The latter could facilitate creation of co
ous amounts of antihydrogen.

The finite temperature equilibrium for a pure electr
plasma confined on magnetic surfaces is fundamentally
ferent from those previously studied, implying that ne
physics is involved.1 In this paper, we present the first nu
merical study of such equilibria in two dimensions. We sh
that the equilibrium equation can be derived by minimizing
suitably defined energy. The effects of different bound
conditions are explored in the two distinct physics regimes
the equilibrium,a/lD!1 anda/lD@1, wherea is the char-
acteristic~radial! size of the plasma andlD5Ae0Te /ne2 is
the Debye length. Implications for collisional transport tim
scales are discussed.
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II. THEORY

The equilibrium equation for a finite-temperature, low
density pure-electron plasma in a magnetic surface confi
ration is1

¹2f5
e

e0
N~c!expS ef

Te~c! D . ~1!

Here, low density impliesn!nB , wherenB5e0B2/2me is
the Brillouin density.4 c is the magnetic surface coordinat
that is, thec5constant surfaces are the magnetic surfaces
the following, we will assume for simplicity thatTe is con-
stant ~but nonzero!. The equilibrium equation can then b
written in terms of dimensionless variables as

¹̃2f̃5s~c!exp~f̃ !, ~2!

where f̃5ef/Te , s(c)5N(c)/N(0), and thespatial di-
mensions are measured in units of a characteristic s
lengthsD5Ae0Te /e2N(0), which is reminiscent of the De
bye length. Hence,

¹̃25
]2

] x̃2 1
]2

] ỹ2 1
]2

] z̃2 ,

wherex̃5x/sD , ỹ5y/sD , z̃5z/sD . In the high temperature
limit ~i.e., whena/lD!1), sD'lD andN(c)'n. In other
words, the density is nearly constant on a magnetic surf
However, in the low temperature limit, i.e.,a/lD@1, N(c)
is substantially different fromn and sD is substantially dif-
ferent fromlD . The variation ins(c) is a measure of how
far the plasma is from global thermal equilibrium.

The equilibrium equation, Eq.~2!, can be derived from
the condition that the total energy of the system be extre
against variationsdf̃ in f̃ that are zero at the boundary o
the solution domain, if the dimensionless energy is defin
as5
© 2003 American Institute of Physics
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W̃5E ~ 1
2~¹̃f̃ !21s~c!expf̃ !dṼ ~3!

with the integration extending over the volume of the so
tion domain,dṼ5dx̃dỹdz̃. In order for the variational prin-
ciple to hold true, one has to keeps(c) constant when vary-
ing f̃. For perturbations satisfying this, the second or
variation ofW̃ around an equilibrium solutionf̃0 is

dW̃5
1

2 E ~~¹df̃!21~df̃!2s~c!exp~f̃0!!dṼ. ~4!

Hence, the equilibrium is a minimumW̃ state. We canno
conclude, however, that the equilibrium is a true minimu
energy state, as we have not proven that physical pertu
tions keeps(c) constant, and hence, that the free energy
the system is given byW̃. This is a topic of current investi
gation. Regardless of the physical interpretation ofW̃, the
equilibrium being a minimum ofW̃ is an interesting math
ematical property of the equilibrium equation, and one tha
useful for numerical solution techniques. Equivalently, o
can derive the equilibrium equation from minimizing a qua
tity W with proper units of energy@keepingN(c) constant#,

W5E ~ 1
2e0~¹f!21N~c!Te~c!exp~ef/Te!!dV. ~5!

The first term is the electrostatic energy density, whereas
second term is the pressure,nTe .

III. NUMERICAL METHOD

A pseudospectral Fourier method has been used to s
the equilibrium equation, Eq.~2!, in two dimensions, to find
the equilibrium f̃(x,y). The Laplacian decouples com
pletely in Fourier space, which allows implicit evaluation
the Laplace term without having to solve large sets
coupled linear equations. The term pseudospectral imp
that the nonlinear term,f (f̃)5s(c)exp(f̃), is evaluated in
real space, i.e.,f̃ is transformed from Fourier space to re
space,f is calculated in real space, and then transformed
Fourier space. Denoting the Fourier coefficients by sup
script k, where k5(kx ,ky) is the wave vector in Fourie
space, the equilibrium equation for each Fourier mode is

]f̃k

]t
52 f k2k2f̃k. ~6!

Here, we have regularized the equation by adding a t
]f̃/]t. This improves numerical stability. The steady sta
solution (]f̃/]t50), is the equilibrium solution. The itera
tion formula then becomes

f̃ j
k5

f̃ j 21
k 2dt f j 21

k

11k2dt
. ~7!

dt must be positive in order to achieve convergence towa
the steady state solution. The boundary conditions are
posed through a method of image charges, which is
scribed in the Appendix.
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The algorithm described above was implemented in
teractive Data Language~IDL !, and all the results presente
here are for a spatial resolution of 1283128 grid points~and
Fourier modes!. In the a/lD!1 limit, dt51 is appropriate
for convergence, but in thea/lD@1 limit, convergence be-
comes unacceptably slow unlessdt is gradually increased
from one iteration to the next. In the most extreme ca
(a/lD'10), dt must be increased slowly as the algorith
converges to as much as 1038 to ensure convergence in les
than 10 000 iterations. The slow convergence can be un
stood as follows. In order to increasea/lD , we increase the
size of the plasma and the domain size. For the dimens
less equilibrium equation, the scale size issD rather thanlD ,
and the box size has to be increased from 1 to 1021 ~in units
of sD) in order to increase the plasma radiusa from '0.1lD

to '10lD . This means thatk2 in the iteration formula, Eq.
~7!, is smaller by 42 orders of magnitude, anddt must be
increased accordingly so thatk2dt does not become negligi
bly small.

Since the relation betweenN(c) andn is highly nonlin-
ear in thea/lD@1 limit, it is difficult a priori to guess a
shape forN(c) which produces a desiredn. Therefore, for
all the equilibria studied here, we have imposed a parab
electron density profile

n~x,0!512
x2

a2 ~8!

on they50 line for 0<x<a, and then calculate

N@c~x,0!#5n~x,0!e2f̃~x,0!. ~9!

The subsequent evaluation ofN(c) for other values ofc on
the computational grid requires high accuracy interpolat
of N(c), becauseN varies by many orders of magnitude
the a/lD@1 limit. Because the calculation ofN(c) is com-
putationally intensive, Eq.~7! is evaluated 100 times for eac
recalculation ofN(c). This does not adversely affect th
convergence rate.

IV. RESULTS

The main subtlety of Eq.~1! comes from the lack of
separability of¹2 for nontrivial c(x,y,z), i.e., from any
nontrivial shape of the magnetic surfaces. Ellipticity dom
nates over toroidicity as the dominant breaking of the se
rability as long as long asb/a21@a/R with a andb being
the short and long ellipse axes, andR being the major radius
of a generic elliptical cross section toroidal magnetic surfa
In this case, a two-dimensional description may be appro
ate. We focus our attention on two-dimensional equilib
with elliptic magnetic surfaces. An ellipticityb/a5) is
used throughout the paper. The boundary conditions
those of a perfect conductor located outside the plasma.
present results from two different shapes for the perfect c
ductor. In each case, we investigate thea/lD!1 and the
a/lD@1 limit. In each case we have confirmed numerica
that the equilibrium is a minimumW̃ state, as defined in the
previous section.

We have investigated numerically the differences b
tweena/lD!1 ~warm, thin, small! plasmas, anda/lD@1
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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~cold, dense, large! plasmas, and explored the equilibria
these plasmas for different boundary conditions. In Fig. 1
present contours ofn, f̃, and the magnetic surface coord
natec, for a a/lD'0.1 plasma with a perfectly conductin
boundary whose shape and location is chosen to coin
with a magnetic surface outside the edge of the plasma.
evident that the density contours closely match the magn
surfaces. The variation off̃ andn on the magnetic surface
is illustrated quantitatively by plottingf̃ andn as functions
of the c coordinate in a scatter plot. The vertical scatter
such a plot indicates the degree to which the quantity va
on a particular magnetic surface. For the equilibrium j

FIG. 1. ~Color! Warm plasma with conforming boundary. Contours of co

stantf̃ ~blue!, n ~red!, and the flux surfaces~black! for a a/lD'0.1 plasma.

The outermostf̃ contour represents the perfectly conducting bounda
which matches a flux surface.

FIG. 2. Scatter plot off̃ ~top! and n ~bottom! as functions of the flux
surface coordinatec for a warm plasma,a/lD'0.1, with perfect conductor
boundary conforming to the magnetic surfaces.c/ca51 is the edge of the
plasma.
Downloaded 20 Jan 2003 to 128.59.59.40. Redistribution subject to AIP
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described, scatter plots off̃(c) and n(c) are presented in
Fig. 2. The points plotted are the values on the 1283128 grid
points. Figure 2 confirms that the density is essentially c
stant on the magnetic surfaces, and illustrates thatf̃ has
some variation on the magnetic surfaces, in particular in
vacuum region and plasma edge regions. Since the boun
condition itself enforces constancy on a particular magn
surface external to the plasma,f̃ does not vary strongly even
though the plasma is relatively warm.

By increasing the plasma size froma'0.1sD to a
'1020sD , the number of Debye lengths in the plasma can
increased froma'0.1lD to a'10lD . Contour plots are
shown in Fig. 3. Scatter plots off̃(c) andn(c) are shown

,

FIG. 3. ~Color! Cold plasma,a/lD'10, with conforming boundary. Con-

tours of constantf̃ ~blue!, n ~red!, and the flux surfaces~black! for a

a/lD'10 plasma. The outermostf̃ contour represents the perfectly con
ducting boundary, which matches a flux surface.

FIG. 4. Scatter plot off̃ andn as a function of the flux surface coordinat
c for a cold plasma with perfect conductor boundary conforming to
magnetic surfaces.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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in Fig. 4. The relative variation off̃ is somewhat smalle
than for the warmer plasma, and becomes very small in
plasma interior, as expected from theTe50 equilibrium,
wheref is constant on a magnetic surface.1 By contrast,n
varies significantly on the magnetic surfaces, in particula
the outer regions of the plasma. Numerical problems ass
ated with the many orders of magnitude variations inN(c)
and exp(f̃) currently limit the code toa/lD,10. A modified
algorithm allowing larger values ofa/lD is currently being
developed.

If indeed the true energy of the system is minimized
equilibrium, the electrostatic interaction between the ima
charges of the wall and the plasma will pull the plasma
wards the closest part of the wall, since that will minimi
the plasma energy. In Penning trap equilibria, the oppo
effect was observed, the electron plasma would actu
move away from positively biased conductors and towa
negatively biased conductors,6 consistent with the fact tha
Penning trap equilibria are maximum energy states.6–8 By
choosing a highly asymmetric perfect conductor shape,
can investigate the effect for a magnetic surface configu
tion, and at the same time, determine the effects of a bou
ary that is far from conforming with the magnetic surface
We choose a relatively cold plasma (a/lD'10) such that the
electrostatic energy term dominates. In the opposite lim
a/lD'0.1, the density becomes nearly constant on the m
netic surfaces, and the electrostatic potential is mostly de
mined by the boundary condition rather than the plasm
Figure 5 shows the magnetic surfaces, the constantf̃ con-
tours, and constantn contours. The outermostf̃ contour is
the conducting boundary, and it is clear that the plasm
attracted towards the conductor, that is, towards the pos
image charges on the conductor surface, as expected
minimum energy state, and in contradiction with what wou
be observed for a maximum energy state. This illustrates

FIG. 5. ~Color! Cold plasma with an asymmetric boundary. Contours

constantf̃ ~blue!, n ~red!, and the flux surfaces~black! for a a/lD'10

plasma. The outermostf̃ contour represents the conducting boundary.
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the equilibrium of a pure electron plasma confined on m
netic surfaces is fundamentally different from previous
studied configurations. This is not an effect of toroidicity, b
is an effect of the magnetic surfaces themselves; a pure
oidal field configuration~which is a closed field line system
without magnetic surfaces! has a maximum energy equilib
rium state.9

Figure 6 shows that the electrostatic potential becom
nearly constant on the magnetic surfaces in the plasma
rior even in this asymmetric case, and that the density va
strongly on magnetic surfaces. There is significant variat
of the electrostatic potential near the plasma edge despite
fact that this is a small Debye length plasma. Note that
large variations inf̃ occur on magnetic surfaces where t
density drops to near zero on at least part of the surface
the density depleted part of the surface, the electron pla
cannot shield out the externally imposed variations inf̃.

V. DISCUSSION

Regardless of the particular shape of conducting str
tures surrounding the plasma, experimentally relevant e
libria exist, i.e., equilibria where the density goes smoot
to zero at the plasma edge. In the large Debye length lim
a/lD!1, the pressure gradient term dominates over the e
tric field term, and plasma pressure becomes nearly cons
on magnetic surfaces, as must the density, since the temp
ture is assumed constant on the surfaces due to rapid pa
heat conduction. In this limit,f̃ is strongly influenced by the
boundary conditions and may vary significantly on magne
surfaces, even in the plasma interior, unless the bound
conditions are chosen carefully.

In the opposite limit,a/lD@1, the electric field term
dominates over the pressure gradient term. In this casef̃
becomes nearly constant on magnetic surfaces, except in
vacuum and plasma edge regions, where the boundary
ditions are important and may impose some variation off̃
on a magnetic surface. However, the relative variation on

f

FIG. 6. Scatter plots off̃ and n as functions ofc for the asymmetric
boundary condition shown in Fig. 5 witha/lD'10.
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on a magnetic surface is exponentially related to the abso
variation off̃ on the surface. This follows immediately from

n5N(c)ef̃. Thus, as the plasma approaches thea/lD@1
limit, the f̃5const surfaces conform increasingly to thec
5const surfaces~the magnetic surfaces! but the absolute
variation off̃ on the outer magnetic surfaces is nonethel
observed to increase.

The collisional confinement time depends on the deg
to which the magnetic surfaces match the surfaces of c
stantf̃.1 The numerical results presented here indicate
the neoclassical transport will generally be larger at the e
of the plasma than at the center, will be significantly affec
by the boundary conditions, and can be reduced by choo
a perfect conductor with an appropriate shape, e.g., confo
ing to the magnetic surfaces. However, the largest variat
in f̃ occur on the part of a magnetic surface where the d
sity is depleted, and hence, only an exponentially small fr
tion of the plasma particles actually reside in the regions
relatively poor confinement. We illustrate this in Fig.
which is a replot of Fig. 6 except that all points with a de
sity less than 5% of the central density have been exclud
It is evident thatf̃ is nearly constant on magnetic surfaces
regions where there is appreciable plasma density, des
the highly asymmetric boundary condition. This effe
which will become even more pronounced at higher val
of a/lD , acts to significantly reduce the transport rate acr
the magnetic surfaces.
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FIG. 7. Scatter plots off̃ andn as functions ofc, excluding points wheren
is less than 5% of the central density, for the same equilibrium show
Figs. 5 and 6.
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APPENDIX: NUMERICAL IMPLEMENTATION OF
BOUNDARY CONDITIONS

A simple Fourier spectral method, such as the one u
here, automatically enforces periodic boundary conditio
This is not a very serious constraint since the box size can
made large enough that the periodicity does not constrain
possible solutions in the interior of the box. However, t
periodicity in f automatically enforces that the avera
value of¹2f @i.e., the~0,0! Fourier mode# must be zero, that
is, the net charge in the computational box must be zero.
example, if a perfect conductor boundary condition is i
posed, the total positive surface charge on the conductor
add up to the total negative charge in the pure elect
plasma. Such a surface charge corresponds to a Diracd
function in charge density on the conductor. There will i
evitably be severe ‘‘ringing,’’ effects if one tries to impos
such a sharp boundary condition when using a simple F
rier spectral method. Therefore, a different, indirect way
imposing different boundary conditions was used. A smo
distribution of positive charges is placed well outside t
plasma region, such that there is a vacuum region separa
the negative charges of the plasma and the surrounding p
tive charges. Numerically, this is done by adding the posit
space charge contribution to the right hand side of the e
librium equation, Eq.~2!,

f ~x,y!5s~c!exp~f̃~x,y!!2P~x,y!. ~A1!

At each time step, the positive charge distribution is sca
up or down by a scalar factor so that the net charge rem
zero.

By varying the shape and location of the positive cha
distribution, the shape off5const surfaces can be change
and can be made arbitrarily close to, e.g., an elliptical m
netic surface, somewhere in the vacuum region between
negative and positive charges. The solution inside of the
liptical f5const surface is identical to that which would b
obtained by placing a perfect conductor there. The sim
conductor shapes investigated here can be imposed by m
ally changing the shape of the external positive charge
tribution until the desired shape~e.g., conforming to a mag
netic surface!, is obtained. The method is not practical f
arbitrarily shaped perfect conductors.

A constant can always be added tof without changing
the physical solution, as long asN(c) is scaled accordingly.
In the scatter plots presented in this paper, an extra cons
has been added to the numerical solutions forf̃, such that
f̃50 on the perfectly conducting boundary.
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