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Two-dimensional solutions to the equilibrium equation for finite temperature, low density pure
electron plasmas confined on magnetic surfd@eS. Pedersen and A. H. Boozer, Phys. Rev. Lett.
88, 205002(2002] are presented for the first time. These equilibria are not maximum energy states,
in contrast to Penning trap equilibrfid. Notteet al., Phys. Rev. Lett69, 3056(1992]. By varying

the number of Debye lengths in the plasraA\, from 0.1 to 10, we explore both relatively warm
and relatively cold plasma equilibria. The effects of different boundary conditions and the
implications for collisional transport rates are discussed.2@3 American Institute of Physics.
[DOI: 10.1063/1.1535208

I. INTRODUCTION Il. THEORY

This paper presents the first numerical study of equilibria 1€ equili?rium equJation for a finite—tt_amperfature, IO]Z’,V'
of finite temperature pure electron plasmas confined on torgens'ty pure-electron plasma in a magnetic surface configu-
: . : : _ration ig
oidal magnetic surfaces. Magnetic surface configurations,
such as stellarators and tokamaks, are highly developed and V24— EN(:/;)ex e 1)
studied in the context of thermonuclear fusion, and have re- € Te(¥))"

cently become of interest for the confinement of non-neutral_|ere low density implies1<ng, whereng=e,B2/2m, is
1 B B™ €0 e

plasmas:* They have certain advantages over open angne grillouin density* ¢ is the magnetic surface coordinate,
closed field line systems, such as the Penningmabich is  that is, they= constant surfaces are the magnetic surfaces. In
the most successful configuration for confinement of singlehe following, we will assume for simplicity thak, is con-
species plasmas. Magnetic surface configurations confinstant (but nonzer The equilibrium equation can then be
both positive and negative species simultaneously, at anyritten in terms of dimensionless variables as
level of charge imbalance from pure electron to quasineutral. ~,~ ~
They may provide stabilization of diocotron modes, and con- Vih=s()exp(é), @)
fine energetic electrons and positrons at modest magnetighere ¢=ep/T,, s(#)=N()/N(0), and thespatial di-
field strengths. Thus, such configurations have unique advamensions are measured in units of a characteristic scale
tages for laboratory confinement of positron—electfpair) lengthsp= \/eOTe/ezN(O), which is reminiscent of the De-
plasmas, non-neutral electron—ion plasmas, and antiprotonye length. Hence,
positron plasmas. The latter could facilitate creation of copi- 52 52 22
ous amounts of antihydrogen. Vz:ﬁ + W + 72

The finite temperature equilibrium for a pure electron
plasma confined on magnetic surfaces is fundamentally difheréX=x/sp, y=y/sp, Z=2/sp . In the high temperature
ferent from those previously studied, implying that new!Mit (i-., whena/Ap<1), sp~Ap andN(y)~n. In other
physics is involved. In this paper, we present the first nu- words, the density is nearly constant on a magnetic surface.

. S . . However, in the low temperature limit, i.@/\p>1, N(¢)
merical study of such equilibria in two dimensions. We showiS substantially different fronm andsp is substantially dif-

that the equilibrium equation can be derived by minimizing Aarent from\p . The variation ins(¢) is a measure of how
suitably defined energy. The effects of different boundaryy; the plasma is from global thermal equilibrium.
conditions are explored in the two distinct physics regimes of  The equilibrium equation, Eq2), can be derived from
the equilibrium,a/\p<1 anda/\p>1, wherea is the char-  the condition that the total energy of the system be extremal
acteristic(radia) size of the plasma anilp=\eoT/N€? is  against variation$é in & that are zero at the boundary of
the Debye length. Implications for collisional transport timethe solution domain, if the dimensionless energy is defined
scales are discussed. as
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~ Lo -~ o~ The algorithm described above was implemented in In-
WIJ (2(Vé) +s(y)expg)dV (3 teractive Data LanguagéDL ), and all the results presented

) ] ) ) here are for a spatial resolution of 22828 grid pointsand
with the integration extending over the volume of the solu-gqrier modek In the a/Ap<<1 limit, st=1 is appropriate

tion domain,dV=dxdydz In order for the variational prin-  for convergence, but in tha/\p>1 limit, convergence be-
ciple to hold true, one has to kesfy) constant when vary- comes unacceptably slow unless is gradually increased
ing ¢. For perturbations satisfying this, the second ordeifrom one iteration to the next. In the most extreme cases

variation of W around an equilibrium solutiog, is (a/Ap~10), 6t must be increased slowly as the algorithm
converges to as much as*@o ensure convergence in less
a1 ~\2 )2 ~ Y than 10000 iterations. The slow convergence can be under-
SW=5 | (V3¢)"+(5¢)"s(¢)expl¢o))dV. 4) ' : .
stood as follows. In order to increaaé\p, we increase the

size of the plasma and the domain size. For the dimension-

Hence, the equilibrium is a minimuW state. We cannot I b ion. th e sizeigather than
conclude, however, that the equilibrium is a true minimum €ss equrlibrium equation, the scale siz&gsrathérthanp ,
nd the box size has to be increased from 1 t& i@ units

energy state, as we have not proven that physical perturbg- ) . X -
tions keeps(y) constant, and hence, that the free energy o f'Sp) in order to increase the plasma radaisom ~0.1xp

O ~ . . . ” “to ~10\p . This means thak? in the iteration formula, Eq.
the system is given bW. This is a topic of current investi- (7), is smaller by 42 orders of magnitude, aAtl must be

gation. Regardless of the physical interpretatioféf the  jncreased accordingly so thietst does not become negligi-

equilibrium being a minimum ofV is an interesting math- bly small.

ematical property of the equilibrium equation, and one thatis  Since the relation betweeX() andn is highly nonlin-

useful for numerical solution techniques. Equivalently, oneear in thea/\p>1 limit, it is difficult a priori to guess a

can derive the equilibrium equation from minimizing a quan-shape forN(¢) which produces a desired Therefore, for

tity W with proper units of energjkeepingN(y) constanl,  all the equilibria studied here, we have imposed a parabolic
electron density profile

W= [ Geol 6P+ N T wexeg Todv. (9 -
, . . : n(x,0=1-— ()
The first term is the electrostatic energy density, whereas the a
second term is the pressuref. on they=0 line for 0O<x=<a, and then calculate
N[ #(x,0]]=n(x,0e~ 00 )

IIl. NUMERICAL METHOD The subsequent evaluation Nf /) for other values of/ on

A pseudospectral Fourier method has been used to sonj@e computational grid. requires high accuracy inte'rpolat.ion
the equilibrium equation, Eq2), in two dimensions, to find ©f N(#), becauseN varies by many orders of magnitude in

L~ . thea/Ap>1 limit. Because the calculation ®f( ) is com-
the equilibrium $(x,y). The Laplacian decouples com- utationally intensive, Eq7) is evaluated 100 times for each
pletely in Fourier space, which allows implicit evaluation of P y B

the Laplace term without having to solve large sets 01;recalculatlon ofN(#). This does not adversely affect the

. X .~ convergence rate.
coupled linear equations. The term pseudospectral implies 9

that the nonlinear termt () =s(y)exp(@), is evaluated in

real space, i.e.¢ is transformed from Fourier space to real

spacef is calculated in real space, and then transformed to  The main subtlety of Eq(1) comes from the lack of
Fourier space. Denoting the Fourier coefficients by superseparability of V2 for nontrivial ¢(x,y,z), i.e., from any
script k, where k= (k,k,) is the wave vector in Fourier nontrivial shape of the magnetic surfaces. Ellipticity domi-

space, the equilibrium equation for each Fourier mode is hates over toroidicity as the dominant breaking of the sepa-
— rability as long as long ab/a—1>a/R with a andb being
dd

ik L2mk the short and long ellipse axes, aRdeing the major radius
— = —f*—kp~. (6) S i \ :
at of a generic elliptical cross section toroidal magnetic surface.

Here, we have regularized the equation by adding a tem|1n this case, a two-dimensional description may be appropri-

- o ) N ate. We focus our attention on two-dimensional equilibria
d¢lat. This improves numerical stability. The steady state,,;i, elliptic magnetic surfaces. An ellipticitp/a=v3 is

solution (9¢p/dt=0), is the equilibrium solution. The itera- ysed throughout the paper. The boundary conditions are
tion formula then becomes those of a perfect conductor located outside the plasma. We
?bk _ stk present results from two different shapes for the perfect con-
NKZLZH_ (7)  ductor. In each case, we investigate i p<1 and the
: 1+k%at a/\p>1 limit. In each case we have confirmed numerically

5t must be positive in order to achieve convergence towardthat the equilibrium is a minimuridV state, as defined in the
the steady state solution. The boundary conditions are imprevious section.

posed through a method of image charges, which is de- We have investigated numerically the differences be-
scribed in the Appendix. tweena/\p<<1 (warm, thin, small plasmas, an@&/\p>1

IV. RESULTS
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FIG. 1. (Color) Warm plasma with conforming boundary. Contours of con- FIG. 3. (Color) Cold plasmaa/\p~ 10, with conforming boundary. Con-
stantg (blue), n (red), and the flux surfacelack) for aa/\p~0.1 plasma.  tours of constani$ (blue), n (red), and the flux surfacegblack) for a

The outermost} contour represents the perfectly conducting boundary,@/Ap=~10 plasma. The outermogh contour represents the perfectly con-
which matches a flux surface. ducting boundary, which matches a flux surface.

(cold, dense, largeplasmas, and explored the equilibria of described, scatter plots @f() andn(y) are presented in
these plasmas for different boundary conditions. In Fig. 1 weig. 2. The points plotted are the values on the>3228 grid
present contours af, ¢, and the magnetic surface coordi- points. Figure 2 confirms that the density is esserltially con-
nate, for aa/Ap~0.1 plasma with a perfectly conducting stant on the magnetic surfaces, and illustrates thetas
boundary whose shape and location is chosen to coincidgome variation on the magnetic surfaces, in particular in the
with a magnetic surface outside the edge of the plasma. It igacuum region and plasma edge regions. Since the boundary
evident that the density contours closely match the magnetigondition itself enforces constancy on a particular magnetic
surfaces. The variation @b andn on the magnetic surfaces surface external to the plasma,does not vary strongly even
is illustrated quantitatively by plottingg andn as functions ~ though the plasma is relatively warm.
of the ¢ coordinate in a scatter plot. The vertical scatter on By increasing the plasma size from~0.1sp to a
such a plot indicates the degree to which the quantity varie§® 10°°p , the number of Debye lengths in the plasma can be
on a particular magnetic surface. For the equilibrium justincreased froma~0.1\p to a~10\rp. Contour plots are
shown in Fig. 3. Scatter plots @f(#) andn(y) are shown
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FIG. 2. Scatter plot of?;'S (top) and n (bottom as functions of the flux
surface coordinate for a warm plasmaa/\p~0.1, with perfect conductor  FIG. 4. Scatter plot oE& andn as a function of the flux surface coordinate

boundary conforming to the magnetic surfacgb)/,=1 is the edge of the ¢ for a cold plasma with perfect conductor boundary conforming to the
plasma. magnetic surfaces.
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‘AD FIG. 6. Scatter plots ofp and n as functions ofy for the asymmetric
boundary condition shown in Fig. 5 wit/\p~10.

FIG. 5. (Color) Cold plasma with an asymmetric boundary. Contours of
constant?{; (blue), n (red, and the flux surfacegblack for a a/\p~10

plasma. The outermosk contour represents the conducting boundary. the eqUIIIbrlum ofa pure electron plasma confined on mag-

netic surfaces is fundamentally different from previously

studied configurations. This is not an effect of toroidicity, but
in Fig. 4. The relative variation o is somewhat smaller 1S an effect of the magnetic surfaces themselves; a pure tor-
than for the warmer plasma, and becomes very small in th@idal field configuratior{which is a closed field line system
plasma interior, as expected from tAe=0 equilibrium, vylthout magnetic surfacéhas a maximum energy equilib-
where ¢ is constant on a magnetic surfacBy contrastn ~ Mum '_stateg. _ _
varies significantly on the magnetic surfaces, in particular in ~ Figure 6 shows that the electrostatic potential becomes
the outer regions of the plasma. Numerical problems assocfi€rly constant on the magnetic surfaces in the plasma inte-
ated with the many orders of magnitude variation\if) rior even in this asymmetnc case, and _thaF th_e_ density varies
and expf) currently limit the code ta/\ < 10. A modified strongly on magnetlc surfaces. There is significant varlgtlon
algorithm allowing larger values /), is currently being of the electrogtatlc potential near the plasma edge despite the
developed. fact that this is a~small Debye length plasma. Note that the

If indeed the true energy of the system is minimized inlarge_ variations ing occur on magnetic surfaces where the

equilibrium, the electrostatic interaction between the imagél€nsity drops to near zero on at least part of the surface. On
charges of the wall and the plasma will pull the plasma tothe density depleted part of the surface, the electrgn plasma
wards the closest part of the wall, since that will minimize cannot shield out the externally imposed variationgbin
the plasma energy. In Penning trap equilibria, the opposite
effect was observed,. .the elgctron plasma would actually, piscussion
move away from positively biased conductors and towards
negatively biased conductdts;onsistent with the fact that Regardless of the particular shape of conducting struc-
Penning trap equilibria are maximum energy stdt&sBy tures surrounding the plasma, experimentally relevant equi-
choosing a h|gh|y asymmetric perfect conductor Shape, W&bria exist, i.e., equilibria where the density goes Smoothly
can investigate the effect for a magnetic surface configurato zero at the plasma edge. In the large Debye length limit,
tion, and at the same time, determine the effects of a bound®/Ap<<1, the pressure gradient term dominates over the elec-
ary that is far from conforming with the magnetic surfaces.tric field term, and plasma pressure becomes nearly constant
We choose a relatively cold plasma/fp~10) such that the 0n magnetic surfaces, as must the density, since the tempera-
electrostatic energy term dominates. In the opposite limitfure is assumed constant on the surfaces due to rapid parallel
a/\p~0.1, the density becomes nearly constant on the magheat conduction. In this limiig is strongly influenced by the
netic surfaces, and the electrostatic potential is mostly deteboundary conditions and may vary significantly on magnetic
mined by the boundary condition rather than the plasmasurfaces, even in the plasma interior, unless the boundary
Figure 5 shows the magnetic surfaces, the consfanbn- ~ conditions are chosen carefully.

tours, and constant contours. The outermosk contour is In the opposite limit,a/Ap>1, the electric field term

the conducting boundary, and it is clear that the plasma i§lominates over the pressure gradient term. In this case,
attracted towards the conductor, that is, towards the positiveecomes nearly constant on magnetic surfaces, except in the
image charges on the conductor surface, as expected forv@acuum and plasma edge regions, where the boundary con-
minimum energy state, and in contradiction with what wouldditions are important and may impose some variatiorpof

be observed for a maximum energy state. This illustrates thain a magnetic surface. However, the relative variatiom of
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0 APPENDIX: NUMERICAL IMPLEMENTATION OF
BOUNDARY CONDITIONS

A simple Fourier spectral method, such as the one used
here, automatically enforces periodic boundary conditions.
This is not a very serious constraint since the box size can be
made large enough that the periodicity does not constrain the
possible solutions in the interior of the box. However, the
periodicity in ¢ automatically enforces that the average
value ofV?¢ [i.e., the(0,0) Fourier modémust be zero, that
is, the net charge in the computational box must be zero. For
example, if a perfect conductor boundary condition is im-
posed, the total positive surface charge on the conductor will
add up to the total negative charge in the pure electron

0.0 . plasma. Such a surface charge corresponds to a Difc's
0.50  1.00 function in charge density on the conductor. There will in-
v/ L evitably be severe “ringing,” effects if one tries to impose

such a sharp boundary condition when using a simple Fou-

FIG. 7. Scatter plots af andn as functions of, excluding points whera o gpactral method. Therefore, a different, indirect way of
is less than 5% of the central density, for the same equilibrium shown in

Figs. 5 and 6. Imposing different boundary conditions was used. A smooth
distribution of positive charges is placed well outside the
plasma region, such that there is a vacuum region separating

. . . the negative charges of the plasma and the surrounding posi-

ona magne~t|c surface is exponentially related to the abSOIUt'[(iave charges. Numerically, this is done by adding the positive

variation of ¢ on the surface. This follows immediately from space charge contribution to the right hand side of the equi-

n=N()e?. Thus, as the plasma approaches #liey>1 librium equation, Eq(2),

limit, the ¢=const surfaces conform increasingly to tie _ ~ _
=const surfacesthe magnetic surfacgsut the absolute fxy) S(zp)exp(hqb(x,y).). P();,y). distributi FAl) ed
the positive charge distribution is scale

variation of on the outer magnetic surfaces is nonethelesé't €ach time step, ;
observed to increase. up or down by a scalar factor so that the net charge remains

The collisional confinement time depends on the degre&®'°: ) , .
to which the magnetic surfaces match the surfaces of con-. BY varying the shape and location of the positive charge
~ 1 . o gistribution, the shape ap=const surfaces can be changed,
stant¢.” The numerical results presented here indicate tha] - e
. . and can be made arbitrarily close to, e.g., an elliptical mag-
the neoclassical transport will generally be larger at the edge .. . .
etic surface, somewhere in the vacuum region between the

of the plasma than at the center, will be significantly aﬁecwfd;egative and positive charges. The solution inside of the el-

. . nI‘r}ptical ¢=const surface is identical to that which would be
a perfect conductor with an appropriate shape, e.g., conform-

) : .. obtained by placing a perfect conductor there. The simple
ing to the magnetic surfaces. However, the largest varlatlongonductor shapes investigated here can be imposed by manu-

in ¢ occur on the part of a magnetic surface where the deng changing the shape of the external positive charge dis-
sity is depleted, and hence, only an exponentially small fracgipution until the desired shagfe.g., conforming to a mag-

tion of the plasma particles actually reside in the regions of\etic surfack is obtained. The method is not practical for
relatively poor confinement. We illustrate this in Fig. 7, arbitrarily shaped perfect conductors.

V\{hich is a replot of Fig. 6 except thaF all points with aden- A constant can always be added ¢owithout changing
sity less than 5°~/0 of the central density have been excludeg,q physical solution, as long &) is scaled accordingly.
Itis evident thatp is nearly constant on magnetic surfaces injn the scatter plots presented in this paper, an extra constant

regions where there is appreciable plasma density, despijg,s peen added to the numerical solutionsdorsuch that
the highly asymmetric boundary condition. This effect, ~

which will become even more pronounced at higher values‘ﬁ:0 on the perfectly conducting boundary.
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