Introduction to Magnetic Fusion Research

Mike Mauel

Columbia University http://www.columbia.edu/~mem4/

National Undergraduate Fusion Fellowship Program 6 June 2011

The slides for this talk are online at: <u>http://www.apam.columbia.edu/mauel/mauel_pubs/NUF2011_IntroMagFusion.pdf</u>

Monday, June 6, 2011

Outline

- What is fusion?
- Can fusion be "green" nuclear power?
- What is magnetic fusion research today?
- ITER: Fusion at the scale of a power plant
- Columbia University's plasma physics experiments

Energy from the Forces of Nature

Gravity	Tidal Energy
Electromagnetic/ Molecular	Combustion, Batteries, "Everyday" Energy and Chemistry
Weak/Radiation	Geothermal Energy
Strong/Nuclear	Fission, Fusion, and Solar (including wind, hydro,)

Monday, June 6, 2011

Chemical vs. Nuclear Energy Density

(1 ton @ 1500 psi)

Grass

H₂ (4500 psi)

3/4 cup of U ore (0.003% ²³⁵U)

16 FL OZ Water (0.015% D/H)

Why Fission is (Relatively) Easy to Do...

Monday, June 6, 2011

Why Fusion is (Really, Really) Hard to Do...

Fusion in our Sun

- 90% H, 9% He, 1% others
- Solar core: 15,000,000°
- (H + H) fusion rate limited by "Deuterium Bottleneck" or by high coulomb barrier in heavy stars (H + C), (H + N) (Hans Bethe, Nobel 1967)
- Low power density (~1,000 W/m³) with >
 6 billion year burn-up time!

SOHO EUV Image Thursday 17 February 2005

Proton (hydrogen) fusion can not be used for a power plant. It's too slow!

Monday, June 6, 2011

100-300 s after the "Big-Bang": The Age of Fusion

History of the Universe

- At 100 sec, the universe cools to 1,000,000,000°
- Protons and neutrons fuse to Deuterium (heavy hydrogen). The whole universe is a "burning plasma"!
- D + D \rightarrow ³He + p D + D \rightarrow T + p D + T \rightarrow ⁴He + n D + ³He \rightarrow ⁴He + p
- At 300 sec, nearly all D has fused to ⁴He. Universe cools and expands. Fortunately...

Monday, June 6, 2011

Deuterium (also ³He and Lithium): Nature's Gift from the "Big Bang"!

- After the "Age of Fusion", the Universe consists of hydrogen (90%), ⁴He (9%), D (0.02%), ³He (0.01%) and a pinch of Li.
- Heavy elements, including uranium, created billions of years later in exploding stars.
- I g of D yields 4 MW-days (4 times I g U²³⁵)

Monday, June 6, 2011

Fusion Reactions for Earthly Power

$$\begin{array}{rcl} \mathsf{D}+\mathsf{T} & \rightarrow & {}^{4}\mathsf{He}\left(3.5\mathsf{MeV}\right)+\mathsf{n}\left(14.1\mathsf{MeV}\right) \\ \\ \mathsf{D}+{}^{3}\mathsf{He} & \rightarrow & {}^{4}\mathsf{He}\left(3.6\mathsf{MeV}\right)+\mathsf{H}\left(14.7\mathsf{MeV}\right) \\ \\ \\ \mathsf{D}+\mathsf{D} & \rightarrow & {}^{3}\mathsf{He}\left(0.82\mathsf{MeV}\right)+\mathsf{n}\left(2.45\mathsf{MeV}\right) \\ \\ \\ \mathsf{D}+\mathsf{D} & \rightarrow & \mathsf{T}\left(1.01\mathsf{MeV}\right)+\mathsf{H}\left(3.02\mathsf{MeV}\right) \end{array}$$

- Coulomb barrier sets the fusion's high temperature: T > 15 keV (170,000,000 °K) Fusion involves high-temperature ionized matter called "plasma".
- 33 g D in every ton of water, but...
 no T and ³He resources exist on earth.

- 2009 BAFTA "Best British Film" (Director: Duncan Jones, Son of David Bowie)
- It is the near future. Astronaut Sam Bell is living on the far side of the moon, completing a three-year contract with Lunar Industries to mine Earth's primary source of energy, Helium-3. It is a lonely job, made harder by a broken satellite that allows no live communications home. Taped messages are all Sam can send and receive.

Least complicated fusion fuel cycles are variants of D-D, but plasma confinement more demanding, e.g. $D-D ({}^{3}He) Fusion$ $6D \rightarrow 2({}^{4}He) + 3H + e^{-} + n + (41.5 \text{ MeV plasma}) + (2.45 \text{ MeV shield})$

- Significantly reduced fast neutron flux!! Most energy to plasma and then first wall. Simplifies fusion component technologies.
- Next easiest fusion fuel cycle, but requires confinement ~25 times better than D-T(Li) and T extraction from plasma (i.e. only MFE).
- Other challenging, but plausible, D-D options exist for IFE.

Monday, June 6, 2011

D-T (⁶Li) Fusion:

"Most Reactive Fuel" for Earthly Fusion

- D-T fusion has largest cross-section and lowest T ~ 170,000,000°.
- Tritium is created from ⁶Li forming a self-sufficient fuel cycle.
 Practically no resource limit (10¹¹ TW y D; 10⁴(10⁸) TW y ⁶Li)!
- Notice: ~ 80% of energy as fast neutrons (~ 1.5 m shielding).
 - the source of fusion's technology & materials challenge.

15

Self-Sustained Fusion Burn

 $\frac{W_p}{\tau_E} + P_{rad} = (\text{Charged Particle Fusion Power})$ • Lawson's condition
• τ_E is energy confinement time
• Only three reactions can be used within a thermonuclear fusion power plant:
(ta) D + D

(1a) D + D
$$\xrightarrow{50\%}$$
 T(1.01 MeV) + p(3.02 MeV)
(1b) $\xrightarrow{50\%}$ He³(0.82 MeV) + n(2.45 MeV)
(2) D + T $\xrightarrow{}$ He⁴(3.5 MeV) + n(14.1 MeV)
(3) D + He³ \longrightarrow He⁴(3.6 MeV) + p(14.7 MeV)

Neutrons escape and heat surrounding blanket

(i) D-D, (ii) D-T, (iii) D-He³

Self-Sustained Fusion Burn

Monday, June 6, 2011

17

Two Approaches to **Controlled** Fusion Power

• Fast implosion of high-density fuel capsules.

Reaches ~ 200 Gbar from 25-35 fold radial convergence.

- Several ~ 350 MJ (0.1 ton TNT) explosions per second.
- Magnetic Fusion Energy (MFE)
 - Strong magnetic pressure (100's atm) confine low-density (10's atm) plasma.
 - Particles confined within "toroidal magnetic bottle" for at least ~ 10 km and 100's of collisions per fusion event.
 - Fusion power density (~10 MW/m³ and 20,000 × solar) allows plasma to be sustained for continuous power.

Elements of a D-T(Li) Fusion System

Monday, June 6, 2011

IFE Chamber

Two Approaches to Fusion Power

Inertial Fusion Energy (IFE)

- $n \sim 10^{30} \text{ m}^{-3}$ T ~ 20 keV $\tau_E \sim 0.5 \text{ nsec}$ (n T $\tau_E \sim 10^{22}$)
- 30 times more particle density than diamond!

Magnetic Fusion Energy (MFE)

- $n \sim 10^{20} \text{ m}^{-3}$ T ~ 20 keV $\tau_E \sim 5.0 \text{ sec}$ (n T $\tau_E \sim 10^{22}$)
- 250,000 times less particle density than air!

MFE is 10¹⁰ slower and less dense than IFE

Monday, June 6, 2011

MFE: Low Density Implies Long Mean-Free Path

- Coulomb collisions 100 times more frequent for D-T ions than for fusion events. (10,000 times more frequent for electrons!)
- Neutral charge-exchange cross-section is 30,000,000,000 times larger than fusion cross-section, so plasma must be fullyionized and "thick", >2 m, to prevent gas penetration
- At 20 keV, mean-free-path for coulomb collisions about 10 km
- Magnetic confinement requires ion confinement for >1,000 km (620 miles!)

MFE plasma dynamics is nearly "collisionless"

How Do Magnetic Fields Confine Ionized Matter?

$$\frac{d\mathbf{v}}{dt} = q\mathbf{E} + q\mathbf{v} \times \mathbf{B}$$
Fast motion only along B-lines
With magnetic field
$$\mathbf{Fast motion only along B-lines}$$
With magnetic field
$$\mathbf{field line}$$
Electron

B = 2 T and T = 20 keV, then gyroradius \approx 1cm but must be confined along B-lines for hundreds of miles!!!

How to make a magnetic torus?

Toroidal Field from Poloidal Coils

Monday, June 6, 2011

How to make a magnetic torus?

Poloidal Field from Toroidal Coil

How to make a magnetic torus?

Combined Toroidal and Poloidal Field (Tokamak) Monday, June 6, 2011

29

How to make a magnetic torus?

Combined Toroidal and Poloidal Field (Stellarator)

How Do Magnetic Fields Confine Ionized Matter?

MFE Configuration Optimization Depends on Shape

Fundamentally, the behavior of magnetically-confined plasma depends upon the **shape** of the magnetic flux tube...

Magnetic Fusion Reactors are Toroidal

Monday, June 6, 2011

ITER: The International Burning Plasma Experiment

- Culmination of 50 years of magnetic fusion research
- 500 MW fusion power for seven minute pulses
- EU, Japan, Russia, China, S Korea, India, USA
- 50 GJ magnetic energy: the largest superconducting magnet system ever
- At 22B US\$: the most ambitious international science project ever
- 23,000 tons (tokamak only); 360,000 tons entire experimental hall.

Monday, June 6, 2011

ITER is the Biggest Fusion Experiment

Nb₃Sn (Niobium Tin)

- Discovered in 1954
- In 1961, niobium-tin exhibits superconductivity at large currents and strong magnetic fields, becoming the first known material to support the high currents and fields necessary for highfield magnets
- In April 2008, a record non-copper current density was achieved at 0.26 MA/cm² at 12 T and 4.2 K
- Ceramic (brittle)
- T_c = 18.3 °K

Monday, June 6, 2011

• The strands necessary for the ITER TF coils have a total length of 150,000 km and would encircle the earth more than three times!

LDX Conductor in Soldered Cable

37

Cryostat and Thermal Shields/Supports

- In all cases the thermal shields consist of stainless steel panels that are cooled by helium gas with 80K inlet temperature.
- The cooling lines remove the heat load intercepted from the warm surfaces.
- The cold structures, operating around 4K face the TS surfaces.
- The conductive heat loads from all thermal shields are limited to small losses through their supports.

ITER is the Focus of Magnetic Fusion Today

- Huge cost and complexity requires the world's best and brightest.
- International agreement insures international commitment. Fusion scientists must make ITER "work".
- Many physics, technology, and control issues provide opportunities for innovation and discovery.
- Planning for research "after ITER" will likely happen *after* ITER produces its first results (IMHO).

Monday, June 6, 2011

41

Can Fusion be "Green" Nuclear Power?

- No public evacuation plan. Low tritium inventory. Max offsite dose <1 rem; public and worker safety is assured in all events.
- No long term storage of radioactive material.
- While international inspection/monitoring will still be required, fusion does not need any fertile/ fissile material.
- We need to demonstrate the safety and environmental advantages of fusion...

D-T Fusion's Materials Challenge

- When fabricated from low activation materials, fusion will not produce long-lived radioactive by-products.
- Fusion's **materials challenge** is to develop long-life, high-strength materials with high neutron-irradiated fracture toughness, good helium swelling resistance, and low tritium retention.
- Options exist (but much research required): Ferritic/martensitic steels, Vanadium alloys, Tungsten first wall, SiC/SiC composites, new nano-engineered materials, ...

Monday, June 6, 2011

43

Good News: Low Activation Material Options for D-T Fusion 1 Fission: Light Water 10-2 Reactor Curies/Watt (Thermal Power) 10-4 Fusion: Vanadium Fusion: Alloys Reduced Activation Ferritic Steel 10-6 Coal Ash Below Regulatory Concern Fusion: 10-8 Silicon Carbide Composite 10-10 10 100 1,000 10,000

Bad News:

Significant Materials Challenges for Fusion and Gen-IV Fission

Monday, June 6, 2011

45

(Non-Magnetic) Stainless Steels probably **not** be Compatible with D-T Fusion

- He generation can alter the microstructural evolution path of irradiated materials (pronounced effects typically occur for >100 appm He)
 - Cavity formation (matrix and grain boundaries)
 - Precipitate and dislocation loop formation

He bubbles on grain boundaries can cause severe embrittlement at high temperatures

Management of He transmutation products (matrix trapping at engineered 2nd phases) is a key factor for fusion materials

D-T Fusion Material Limits

Lifetime

Hardening,

Fracture

???

Dimensional

Materials Design Window

Instability

Temperature

- Displacement damage and He coupled with stress results in microstructure and property changes.
- Low temperatures (< 0.4 T_m):
 - Hardening + He embrittlement
 - Loss of ductility
 - Loss of fracture resistance
- Intermediate temperatures
 - $(0.3 < T_m < 0.6)$:
 - Swelling + He
 - Irradiation creep + He
- At high temperatures (> 0.4 T_m):
 - Thermal creep
 - He embrittlement
 - Fatigue and creep-fatigue, crack growth
 - Corrosion, oxidation and impurity embrittlement

```
Monday, June 6, 2011
```

How big is Fusion's Design Window?

He embrittlement.

Thermal Creep,

Corrosion

S. Zinkle (8/2010)

47

Magnetic Fusion Research Today

Hot plasma confinement is sufficient for D-T fusion power

Fluctuation-induced transport significantly reduced at high power flux: the "H-Mode"

Controlling plasma instabilities ...

Achieving steady-state...

Over 100 Tokamaks

MAST, E Start, E 🔎 spherical PBX. USA D III, USA TCV, E R NST: ublet II, USA strongly shaped D III-D, USA JET-Divertor, E divertor JET, E ISX-B, USA JT 60 Upgra high-field T 6, R superconductive JFT-2MU, J JFT-2M, J Diva (JFT-2a), J o 0 compression PDX, USA ASDEX-Upgrade, E 0 ASDEX. E ITER DT operation JT 60. J Alcator C-Mod, USA Alcator-A, USA Alcator-C, USA 0 Comp ISS-D. Pulsator, E spawning FTU, E TEXTOR, E TER E JFT-2, J TCA, E 0 PLT, USA modification SST1, IND ST. USA Ormak, USA small Russian devices Tore Supra, E T 10, R KSTAR, S-KOREA TFTR, USA O ATC. USA Start of operation 1970 1980 1990 2000 1960

Monday, June 6, 2011

Mayor Tokamak Facilities

Rapid Progress

Monday, June 6, 2011

52

Simple Fusion Power Conditions

Significant Fusion Power already Produced in the Lab

- 2.5 MW/m³ achieved in TFTR!
- Establishes basic
 "scientific feasibility", but
 power out < power in.
- Fusion self-heating, characteristic of a "burning plasma", has yet to be explored.
- The technologies needed for net power must still be demonstrated.

Fusion power development in the D-T campaigns of JET (full and dotted lines) and TFTR (dashed lines), in different regimes: (Ia) Hot-Ion Mode in limiter plasma; (Ib) Hot-ion H-Mode; (II) Optimized shear; and (III) Steady-state ELMY-H Modes.

Monday, June 6, 2011

Monday, June 6, 2011

HBT-EP Stabilizes Plasmas in NYC!

COLUMBIA UNIVERSITY

Monday, June 6, 2011

Measurement \Leftrightarrow Theory \Leftrightarrow Simulation

Bill Dorland: Tomorrow Nikolai Gorelenkov: Thursday

International Thermonuclear Experimental Reactor

Monday, June 6, 2011

Burning Plasma Experiment by 2026 (?)

- Non-nuclear (H and He) experiments by 2019-21 (?)
- Beginning 2026 (?)...
 Demonstrate/study fusion self-heating in near steady-state conditions:
 - Strongly self-heating:
 - 500 MegaWatts; Fusion power gain ~ 10
 - ~ 70 % self-heating by fusion alpha particles
 - Near steady state:
 - 300 to > 3000 seconds; Many characteristic physics time scales
 - Technology testing
 - Power plant scale
- Numerous scientific experiments/technology tests (superconductors!)
- Demonstrate the **technical feasibility** of fusion power.

Monday, June 6, 2011

John Holdren's AAAS Presidential Lecture (February 2007)

Four Key S&T Challenges

- Meeting the basic needs of the poor
- Managing competition for land, soil, water, and the net productivity of the planet
- Mastering the energy-economy-environment dilemma
- Moving toward a nuclear-weapon-free world

And the biggest challenge:

"Providing the affordable energy needed to create and sustain prosperity without wrecking the global climate with carbon dioxide emitted by fossil-fuel burning."

Summary

- Fusion promises nearly unlimited carbon-free energy.
- Tremendous progress has been made both in understanding and achieving fusion parameters.
- With the NIF operating and the world committed to construct ITER, we now have the opportunity to demonstrate controlled fusion energy in the laboratory.
- Huge challenges must be overcome to make fusion practical: advanced materials for D-T fusion and/or advanced confinement for D-D(³He) fusion
- The world needs a successful fusion R&D program that will allow fusion to provide a long term energy solution.