Axisymmetric, High-β, Steady-State Plasma Torus: A “Wind Tunnel” to Develop Whole Device Models

Mike Mauel, Jay Kesner, Barrett Rogers
Dept. Applied Physics and Applied Math, Columbia University
Plasma Science and Fusion Center, MIT
Dept. of Physics and Astronomy, Dartmouth College

DOE Workshop on Integrated Simulations for Magnetic Fusion Energy Sciences: Community Teleconference
Presentation CD-Mauel-M (May 19, 2015)
Many Challenges to Whole Device Models in Fusion Energy Science

- Resistive and Extended MHD & Disruptions
- RF Heating
- ITER Modeling
- Kinetics & Reduced Dimensional Models
- Plasma Control
- Energetic Particles
- Model Development Validation
- Edge Power and Particle Balance, Pedestal Stability, PMI, Liquid Wall, ...

Fusion Optimization

Optimization

Kinetics

Reduced

Dimensional

Models
We can make progress in the near term with a Plasma “Wind Tunnel”: The \textit{Simplest} Plasma Torus

- No parallel currents \textit{(no disruptions; no kinks; no tearing modes; no density limits; ...)}
- Axisymmetry \textit{(simplicity; omnigenous drifts;...)}
- Simple kinetics \textit{(similar dynamics for passing and trapped particles allow accurate reduced dimensional models)}
- Steady state \textit{(without time-evolving geometries or transients)}
- Good particle, energy, and momentum confinement; \textit{High-beta}
- Boundary layer physics \textit{between Open/Closed field lines (e.g. SOL, PMI, ...)}
- Non-trivial, fusion-relevant physics \textit{(sources & sinks; nonlinear turbulent cascade; up-gradient pinch; high-temperature and density; small ρ^*; ...)}
- First-principles understanding \textit{(without the need for \textit{ad hoc} assumptions)}
Simplest Fusion-Relevant Plasma Torus: Axisymmetric, Levitated Current Ring

Simple Geometry and Kinetics:
- Axisymmetric
- Omnigeneous “Classical” Orbits
- Small ρ^* and Adiabatic Dynamics
- No transients and Steady State

Fusion Relevant Physics:
- Particle and Heat Sources
- Confined Pressure, Particles, Momentum
- Boundary Layer Transport
- SOL Flows
Axisymmetric Levitated Current Ring

- Dynamics dominated by interchange and entropy modes

 because plasma is stabilized by compressibility and magnetic field tension

- Relatively easy kinetic closures

 because passing and trapped particle dynamics are similar

- Demonstrated first-principles simulations using bounce-averaged kinetic and gyrokinetic codes

 showing fascinating nonlinear physics and quantitative agreement with some observations

- Leverages decades of space weather modeling

- *Existing experimental facilities for validation studies*

 LDX at MIT and RT-1 at University of Tokyo
Comparing to the Familiar Tokamak...

(a) Dipole Interchange-Entropy Modes

(b) Tokamak ITG-TEM Modes

Weak gradients: $\omega_p^* \sim \omega_d$

Stable by compressibility and field line tension

Steep gradients: $\omega_p^* >> \omega_d$

Stable by average curvature and magnetic shear

X. Garbet, Comptes Rendus Physique 7, 573 (2006)
What is known...
(giving confidence in this “wind tunnel” approach)

✓ Classical, adiabatic particle orbits
✓ Linear electrostatic and magnetostatic waves and instabilities at arbitrary beta (\(\beta \sim 1\))
✓ Energetic particle stability and nonlinear drift-resonant transport \textit{without adjustable parameters}
✓ Structure of gradient driven interchange and entropy mode turbulence in steady-state (and also during rapid toroidal rotation)
✓ We know how to create, sustain, and control the plasma torus but only at low power (~ 20 kW) and only with \(T_e \gg T_i\)
✓ Rate of global turbulent self-organization (inward pinch) equals measured quasilinear diffusivity \textit{without adjustable parameters}
✓ Self-organization and turbulent pinch reproduced by nonlinear gyrokinetic simulations and understood with bounce-averaged fluid equations with drift-kinetic closure
Measurement of Density Profile and Turbulent Electric Field Gives Quantitative Verification of Bounce-Averaged Gyrokinetic Pinch
Rate of Global Self-Organization Agrees with Space Weather Models & Measured Turbulence Intensity \textit{without Adjustable Parameters}

Quasilinear Flux using 2D Bounce-Averaged Fluid Equations with Drift-Kinetic Closure

[Note: Different Scales]

(a) Particle Flux (b) Temperature Flux (c) Entropy (P∂V^γ) Flux

Nonlinear Turbulent Flux using 5D Gyrokinetic (GS2) Simulations

Particle flux Ion temperature flux Electron temperature flux

Kobayashi, Rogers, and Dorland, Phys Rev Lett 105, 235004 (2010)
What is *not* known and needed...

- Can we use reduced dimension nonlinear models (e.g. bounce-averaged fluid equations with drift-kinetic closures), with sources and sinks, and reproduce the saturated turbulence levels?
- How do we model the edge boundary interface and SOL flows?
- How do particle and heat sources influence the self-organized profiles?
- What are the roles of momentum input? Flow shear? T_i/T_e ratio? Ionic mass and impurities?

➡️ We need to apply the 1 MW RF heating source now available at LDX. *This will increase heating power by more than 30 times and produce steady-state fusion relevant parameters.*

➡️ We need improved diagnostics for non-perturbing observation of plasma profiles and the turbulent spectrum.

Using existing facilities, this is not an expensive program.
Achieving our long-term goal...

will require many development steps and will benefit from low-cost, simple “wind tunnel” tests
Wright Brother’s Wind Tunnel
> 200 Wing Shapes
Low Cost Validation
We should use a “wind tunnel” approach for whole device modeling for Fusion Energy Science:

Step 1:
First, understand and validate using the **simplest possible** plasma torus

By using existing facilities, this is not an expensive program.