Interchange Instability and “Bubbles”
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Rayleigh-Taylor Instability in Magnetized Plasma

N
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® These instabilities occur every evening as the sun sets.
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" Anisotropic! (constant along B)

" Also driven by magnetic curvature and pressure.
Avoiding these instabilities by shaping the magnetic bottle
is a guiding principle of fusion research.




Earth’s Magnetosphere
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Sharp edge of plasma sphere is stable to interchange modes.




Jovian Magnetosphere
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Jovian Magnetosphere

Io Sulfur Torus
S+ emission (6731A)
11 January 1990

N.M. Schneider, J.T. Trauger
Catalina Obs.




Interchange Bubbles should Propagate Inward
through the lo Plasma Torus

Jovian day is 11 hours!
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Numerical simulation of torus-driven plasma transport in the Jovian magnetosphere
Yang, Y. S. etal., JGR (1994)




Interchange Bubble seen in Jovian Magnetosphere?
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Figure 3. The radial profile of phase space density for
energetic (1.0 MeV/nuc. G) S in the torus. For the anomalous
: enhancement at L=6.03, the phase space density is comparable
10° T E to that measured in the outer tgrus near L= 6.3.
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Figure 1. Plasma signatures in MAG (top panels), EPD
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Motivating Questions

= What is the nature of interchange instability for
plasma trapped by a dipole magnetic field?

= Geometric structure of the electric fields?

= Size and shape of plasma dynamical motion?
= Nonlinear evolution...

® Do “bubbles” form?

® How do the bubbles evolve in time?

® How do the plasma profiles evolve?

= Can we develop a physical model describing the
dynamics of interchange instability in a dipole?




Observing Interchange Instabilities in a
Laboratory Magnetic Dipole:

Rising Bubbles and Rising Tones

Mike Mauel, representing work by
Ben Levitt, Dmitry Maslovsky, and Harry Warren
Columbia University

Outline

= Collisionless Terrella Experiment (CTX)

= Hot Electron Interchange (HEI) Instability
= Global mode structure and frequency sweeping

= Inward motion of phase-space holes (or vacuum “bubbles”)
= Self-consistent Numerical Simulation

(Application to Fusion Energy: High pressure,
confinement by a levitated dipole magnet)
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CTX (something newly installed)

(b) Exploded-view of insulated bias and detector and illustration of
assembly steps

Insulated detector array

Bxisting terrella with sup-
port brackets

® 5
Insulated bias capwith T
segmented hot-filaments @ Insulated detector array with

gridded energy analyzers and
net-current detectors




CTX (something newly installed)

Low Frequency
Convective/Drift Motion
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Trapped Electron Orbits

MAGNETIC FIELD LINE

= Motion described by three well-separated frequencies

= Adiabatic invariants: (y, J, y) —> (0., ®,, 0,)

= (Normally, for these experiments, y and J are
constant. Electron dynamics is 1D!)

Important: o, ~energy/R? .~ 1/R3




Magnetic Geometry
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Typical Microwave Discharge
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Quasiperiodic Instability Bursts
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Multi-Probe Cross Correlations
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Multi-Probe Cross Correlations
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= Phase correlations, direction
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Multi-Probe Cross Correlations
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= Phase correlations, direction
= Azimuthal mode, m

= Uniform structure along B




Multi-Probe Cross Correlations

._! Probes /2 m=1
3
\\2\_ 0
o (=375
-2 i
. —-—Ii———-ZHi'E n/2 m=2
[ VN NS
otro NP AN .
gyL ||I l\\\h/*" ,uld 67 cm !?t 9 30 ge =" ’ A=
N/ )
\:_—_/ l -1/2
h u'- /2 m=3
I: 1m hl Q
:é: 5 Ofoogge °°Q
= Phase correlations, direction s
| 30 40 50 60
= Azimuthal mode, m R (cm)

= Uniform structure along B

= Rigid rotation




Multi-Probe Cross Correlations
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Physical Picture of HEI
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The 1on polarization current is always sta-
bilizing, and this leads to an instability
threshold.

(Ref: Krall, Phys. Flurds, 1966)




Simulating Resonant Interchanges

Electric Potential

An example of plasma’s fundamental nonlinear coupling!




Simulating Resonant Interchanges
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Simulation Results
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Frequency Sweeping Corresponds to “Holes” in
Multiple Hot Electron Phase-Spaces

Hard X-Ray Counts
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Phase-space “holes” begin at
low energy and outer flux 0 30 60 90
surfaces. Normalized time >

As frequency increases,
“holes” propagate inward.




Motion of Phase-Space Holes

>
()]
o

(92
o

= N w LN
o o o o

Magnetic moment, #Bg, keV
o

10

3.0 M7

V4

/

= Magnetic drift proportional to

5

/ <

&

p (energy)
= Location of a (~100 V)

phase-space “hole” is set by
resonance condition

7

— o

Z

0 = w,(u) ~ u/R?

Z

L

= As frequency rises, phase-
space hole moves

adiabatically inward!

20 30 40
Equatorial distance, cm

5

0

60 70




Why does the frequency rise?
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A General Nonlinear Description for
Instability near Threshold

H. L. Berk, B. N. Breizman, et al., Phys. Plasmas, 6, (1999)

Berk and co-workers have described
spontaneous frequency sweeping.

" Inverted particle distribution profile

» Near threshold: linear growth, balanced by
non-resonant dissipation

< Slowed linear growth is followed by an
explosive phase and frequency sweeping

< Requires collisionless resonant particles

Two criteria for frequency sweeping:

Y. <2.57, Vetr <VL ~Va =V




A test for phase-space holes...
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= Apply cyclotron resonant
fields to the outer flux
surfaces: locations where
phase-space “holes” are
initiated

= Stochastic energy
diffusion (within a flux
tube) fills the phase-space
“holes” and arrests
frequency sweeping




Low-Power RF Fields Suppress Frequency Sweeping

f=701.3MHz, P=34W
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Low-Power RF Fields Suppress Frequency Sweeping
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Modeling ECRH Diffusion

The applied cyclotron resonant RF fields are modeled as causing diffusion of
energetic electrons in u-space, according to:

2

P g) o D(pt) 2 (P F)

This 1s similar to velocity-space diffusion described by Berk:

X3

o eﬁaszz(f 2

Note, ECRH diffusion is NOT constant across the phase-space:

vay = 9D(y)(cB/ey)’




Simulation Confirms Berk Model...
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Summary

Interchange instabilities driven by energetic electrons
trapped by a magnetic dipole have broad radial
structures and rotate rigidly with the electron drift.
The electrostatic fields create wave-particle
resonances in the 1D phase-space of the electrons.

“‘Bubbles” form! They appear in phase-space and
have a non-uniform structure in energy and radius.

Nonlinear frequency sweeping results in the inward
propagation of the phase-space holes.

Frequency sweeping is suppressed with low-power RF
fields.

A self-consistent nonlinear simulation reproduces
frequency sweeping and identifies phase-space holes
as predicted by Berk, et al. (1999).




= Studies and observations
of the planetary
magnetospheres give
good understanding

= High p > 1

» Rapid plasma circulation
with low energy loss

Jupiter Aurora
Hubble Space Telescope - WFPC2

PRCIE-32 « BT Sl P « Detesbar 17, 19608 « J, Cladhs (Usivecsity ol Madhigan) and NATA




Levitated Dipole Experiment (LDX)

A fusion concept inspired by
nature:

Can fusion benefit from unique features found
in the planetary magnetospheres?

Simplest magnetic field geometry
Energetic plasma confined with § > 1
Rapid plasma circulation combined with
strong adiabatic compression

and magnet technology:

Floating Coil (Nb;Sn /1.5 MA)
Charging Coil (NbTi /4.2 MA)
Levitation Coil (Bi-2223 / 300 kA)

First operation expected within months!







Strong Modulations in e- Flux
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Stochastic Diffusion—»

Hot electron interchange instability Bursts in CTX
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