Interchange Instability and "Bubbles"

Gravitational Rayleigh-Taylor

Nonlinear: Bubbles, fingers, vortices,

Rayleigh-Taylor Instability in Magnetized Plasma

- Anisotropic! (constant along B)
- These instabilities occur every evening as the sun sets.
- Also driven by magnetic curvature and pressure. Avoiding these instabilities by shaping the magnetic bottle is a guiding principle of fusion research.

Earth's Magnetosphere

Sharp edge of plasma sphere is **stable** to interchange modes.

Jovian Magnetosphere

Jovian Magnetosphere

Interchange Bubbles should Propagate Inward through the Io Plasma Torus

Numerical simulation of torus-driven plasma transport in the Jovian magnetosphere Yang, Y. S. *et al.*, *JGR* (1994)

Interchange Bubble seen in Jovian Magnetosphere?

Motivating Questions

- What is the nature of interchange instability for plasma trapped by a dipole magnetic field?
 - Geometric structure of the electric fields?
 - Size and shape of plasma dynamical motion?
- Nonlinear evolution...
 - Do "bubbles" form?
 - How do the bubbles evolve in time?
 - How do the plasma profiles evolve?
- Can we develop a physical model describing the dynamics of interchange instability in a dipole?

Observing Interchange Instabilities in a Laboratory Magnetic Dipole:

Rising Bubbles and Rising Tones

Mike Mauel, representing work by Ben Levitt, Dmitry Maslovsky, and Harry Warren *Columbia University*

Outline

- Collisionless Terrella Experiment (CTX)
- Hot Electron Interchange (HEI) Instability
 - Global mode structure and frequency sweeping
 - Inward motion of phase-space holes (or vacuum "bubbles")
- Self-consistent Numerical Simulation
- (Application to Fusion Energy: High pressure, confinement by a levitated dipole magnet)

CTX

1 kW 2.45 GHz μ Wave Discharge

CTX Floating Potential -Probe Magnetic Probe Existing Polar Detectors m = 3 Antenna

CTX (something newly installed)

(b) Exploded-view of insulated bias and detector and illustration of assembly steps

CTX (something newly installed)

Low Frequency Convective/Drift Motion

Trapped Electron Orbits

- Motion described by three well-separated frequencies
- Adiabatic invariants: (μ , J, ψ) –> (ω_c , ω_b , ω_d)
- (Normally, for these experiments, µ and J are constant. Electron dynamics is 1D!)

Important: $\omega_d \sim \text{energy/R}^2 \quad \omega_c \sim 1/R^3$

Magnetic Geometry

Typical Microwave Discharge

Quasiperiodic Instability Bursts

Phase correlations, direction

- Phase correlations, direction
- Azimuthal mode, *m*

- Phase correlations, direction
- Azimuthal mode, m
- Uniform structure along B

- Phase correlations, direction
- Azimuthal mode, m
- Uniform structure along B
- Rigid rotation

- Phase correlations, direction
- Azimuthal mode, m
- Uniform structure along B
- Rigid rotation
- Broad radial structure

Physical Picture of HEI

Hot electron disk, $J \approx 0$, described by bounce-averaged distribution, $F(\mu, \psi)$.

Cold electrons force $k_{\parallel} \rightarrow 0$ and create a 2D problem in time, (ψ, ϕ, t) .

Cold neutralizing ions.

Define N_i, N_e, N_h as the total charge on a flux tube. For adiabatic profiles, $\partial N_i / \partial \psi \approx 0$.

The electron $\mathbf{E} \times \mathbf{B}$ flows are proportional to the hot electron gradient, $\partial N_h / \partial \psi$, and they lag or lead the circulating wave.

The ion polarization current is always stabilizing, and this leads to an instability threshold.

(Ref: Krall, Phys. Fluids, 1966)

Simulating Resonant Interchanges

An example of plasma's fundamental nonlinear coupling!

Simulating Resonant Interchanges

Solved on a 64 x 64 grid: 8 hours on one 2.0 GHz PIV.

Simulation Results

Frequency Sweeping Corresponds to "Holes" in Multiple Hot Electron Phase-Spaces

The linear frequency of the mode $\omega < \omega_d/2$

Phase-space "holes" begin at low energy and outer flux surfaces.

As frequency increases, "holes" propagate inward.

Motion of Phase-Space Holes

- Magnetic drift proportional to µ (energy)
- Location of a (~100 V) phase-space "hole" is set by resonance condition

$$\omega = \omega_{\rm d}(\mu) \sim \mu/{\rm R}^2$$

 As frequency rises, phasespace hole moves adiabatically inward!

Why does the frequency rise?

(Where does the electron energy go?)

A General Nonlinear Description for Instability near Threshold

H. L. Berk, B. N. Breizman, et al., Phys. Plasmas, 6, (1999)

Berk and co-workers have described spontaneous frequency sweeping.

- Inverted particle distribution profile
- Near threshold: linear growth, balanced by non-resonant dissipation
- Slowed linear growth is followed by an explosive phase and frequency sweeping
- **C**Requires *collisionless* resonant particles

Two criteria for frequency sweeping: $\gamma_L < 2.5 \gamma_d$ $v_{eff} < \gamma_L - \gamma_d \equiv \gamma$

A test for phase-space holes...

- Apply cyclotron resonant fields to the outer flux surfaces: locations where phase-space "holes" are initiated
- Stochastic energy diffusion (within a flux tube) fills the phase-space "holes" and arrests frequency sweeping

Low-Power RF Fields Suppress Frequency Sweeping

Low-Power RF Fields Suppress Frequency Sweeping

Modeling ECRH Diffusion

The applied cyclotron resonant RF fields are modeled as causing diffusion of energetic electrons in μ -space, according to:

$$\frac{\partial}{\partial t}F(\mu,\psi,\varphi,t)+\ldots=D(\psi,t)\frac{\partial^2}{\partial\mu^2}\left(F-F^*\right)$$

This is similar to velocity-space diffusion described by Berk:

$$\frac{\partial f}{\partial t} + \ldots = v_{eff}^3 \frac{\partial^2}{\partial \Omega^2} \left(f - f^* \right)$$

Note, ECRH diffusion is <u>NOT</u> constant across the phase-space:

$$v_{e\!f\!f}^3$$
 = 9 $D(\psi)(cB/e\psi)^2$

Simulation Confirms Berk Model...

Mystery (?) of High-Power 2.45 GHz

2.45 GHz

Summary

- Interchange instabilities driven by energetic electrons trapped by a magnetic dipole have broad radial structures and rotate rigidly with the electron drift. The electrostatic fields create wave-particle resonances in the 1D phase-space of the electrons.
- "Bubbles" form! They appear in phase-space and have a non-uniform structure in energy and radius.
- Nonlinear frequency sweeping results in the inward propagation of the phase-space holes.
- Frequency sweeping is suppressed with low-power RF fields.
- A self-consistent nonlinear simulation reproduces frequency sweeping and identifies phase-space holes as predicted by Berk, *et al.* (1999).

Dipole Fusion ?

- Studies and observations of the planetary magnetospheres give good understanding
- High $\beta > 1$
- Rapid plasma circulation with low energy loss
- Need to remove the magnetic poles!

PRC96-32 • ST Scl OPO • October 17, 1996 • J. Clarke (University of Michigan) and NASA

Levitated Dipole Experiment (LDX)

A fusion concept inspired by nature:

Can fusion benefit from unique features found in the planetary magnetospheres?

Simplest magnetic field geometry Energetic plasma confined with $\beta > 1$ Rapid plasma circulation combined with strong adiabatic compression

A partnership between plasma physics and magnet technology:

Floating Coil (Nb₃Sn / 1.5 MA) Charging Coil (NbTi / 4.2 MA) Levitation Coil (Bi-2223 / 300 kA)

First operation expected within months!

Strong Modulations in e⁻ Flux

Hot electron interchange instability Bursts in CTX

Two distinct phases: ECR heating phase and afterglow

In the afterglow: the average drift frequency of the hot electrons is higher, no microwave heating

